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A. Foreword.

In this report it has been attempted to cover tbe m_Jn _=_ of +he _ at

producing an optimal control synthesis procedure at Aeronca.
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Before describing the presentation_ attention should be called to the highlights

of this report. In Chapter 3, very recent work actually leading to a "rational"

synthesis procedure is discussed. What had previously been a theory largely serving

as guidance for a sharper intuition, now for the first time comes into its;own as with an

algorithm for producing a"closed form"control law. In view of the optimistic comments on the
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I
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possibilities that this step unfolds to say nothing of the pessimism voiced as to

the possibility of ever generating such a "closed form", the chapter deserves special

reading. Having actual samples of the "closed form" in hand, brings much more clearly

into focus the possibilities - not the least of Which is i_rther work - that it affords.

In any case, a lot .more is known.
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Another source0f insight will be having a number of trajectories in hand. Work

along this line has been direcled toward developing a computing procedure that will make

these trajectories mmenable without undue computing time. This effort is covered in

Sections 4.4 and 4.6, where a novel approach taking advantage of the possibility of a

steepest descent approach is developed.
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Turning now to the body of the report. The first two chapters are given over to

developing an understanding of the theory of optimal control. The first chapter dis-

cusses the background while the second chapter gives a detailed account of the theory

with examples of the generality where it is shown that other criteria than time optimal

are also treated by the general theory. In Chapter 3, a theory that actually computes

switching surfaces in developed. To our knowledge, these results are presented for the

first time here. Chapter _ gives a presentation of the adjoint system approach as a

synthesis and investigation technique. The following chapter covers some preliminary

thoughts on the procedure by which the approaches for Chapter 4 might be realized in
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hardware configurations expressly designed as control computers. In Chapter 6,

applications to real plants are discussedo It might be ment!oned here that not the least

of these applications is to the control of the Saturn, which is a central theme of the

work here, and that this work is currently being reported in reports under contract

NAS8-5002. Finally there are three appendices being devoted to outlining the algorithm

for computing trajectories, giving in order the algebra required, an outline of the

steps of a computer program that will effect this algebra and finally a statements of

this program in FORTRAN language.

It is to be noted that a wide approach to the synthesis problem has been taken

here. Admittedly at this stage a certain disjointedness in the seperate developments

exists. To have not broached the problem over this breadth would certainly have led

to oversights in the approach_ which is to develop a straightforward optimal control

synthesis technique. It is expected that as the resnlts flow in the approach will show

a more unified viewpoint. Certainly, very material beginnings of this trend are already

to be observed.
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i. 0 INTRODUCTION AND BACKGROUND

In order to introduce the subjec + of time-optima/ control, we shall summarize briefly

the salient facts about what seems to be the simplest possible example.

Consider an axially symmetric mass, with unit moment of inertia, free to rotate

frictionlessly about its axis of symmetry. (This is a fairly good representation of the

problem of controlling the roll of a space vehicle ). Let e denote the angle between a

radial line fixed in the body, and a radial line fixed in inertial space, and suppose that

it is desired to bring the angle e to zero. (Figure I.i).

As usual, let e denote the rate of change of e, or the angular velocity of the

body, i.e.,

(l) b = de/at.

Suppose that it is possible to measure e and

suppose that it is desired to apply a controlling torque

some prespecified dependence on the instantaneous state

finally that themaximnmtorque available is un_±y i.e.,

at each instant of time t, and

7 = 7(e, e) in accordance with

(e, e) of the body. Suppose

(2) -i ___,(e, _) __+l.

Then, according to the well known principles of mechanics, the state (e(t), e(t))

of the body will evolve in a manner determined by the differential equation

(3) b" - _,(e, _), e(o)= %, b(o)= bo, 171-" l.

-3-
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The problem of s_nthesis of a control system for the body is thus reduced to the

choice of the control function 7(0_ 5).

One possible control function is

(4) _=-s_(e+x_), x>o.

After a finite number of changes of sign_ the system (3-4) reaches a state where the

only choice of % consistent with the physically necessary seml-continuity of e, i.eo,

(5) e(t + O) = e(t),

is % = 0 for all t _ T. > 0. This state (e., 5.), first realized by Flugge-Lotz and

Klotter [1]j is called an end-state; subsequently there are compelling physical reasons,

first proved by Andre and Seibert [2], for extending the model (3-9) by the l_er-order

differential equation

(6) b + (l/X)e = o, e(o) = e., &(o) = b..

It can be seen from the example in Figure 1.2 tha% in general, several'overshoots'

will occur before the motion at last decays exponentially to rest.

Within the past decade it has been realized that it is possible to effect a drastic

improvement in the performance of the control system defined by (4). In f_ct, if the con-

trol function

(7) 7 = -,_(e +{_I#I)

be used, then the body will always come to rest in the desired attitude in a finite length

-4-
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of time T 3 after at most one change of sign of the controlling torque. Moreover, it

has been proved (cf. [3], [4], [9]) that no control function satisfying (2) can bring the

body to rest in a time less than T.

This is because the control (7) anticipates the future evolution of the motion and

reverses the torque at precisely the time when otherwise unnecessary energy would be

added to the body and it would be impossible for a unit torque to halt the motion before

at least one overshoot had occurred.

Now virtually all engineering systems of practical interest have more than two degrees

of freedom, and obey more complicated electromechanical equations than (3). Hence a theory

of time-optimal control for systems with arbitrarily many degrees of freedom and arbitrary

_r_r_?-1_ I_ _r111_+_ _71c ,m1_+ 1_ _ _ •

o......... o _ ......... _ in order to exploit this concept as a practical sys-

tem synthesis procedure.

Here we shall attempt to present an introductory exposition to one such general theory,

including a statement of the present status of the theory, together with some original re-

sults intended to bring the theory to the point of practical effectiveness.

1.1 DEFINITIONS AND STANDING ASSUMPTIONS.

Suppose that the instantaneous state of a certain electromechanical system can be

specified by a set of n numbers Xl, x2, ..., xn.

For brevity, we shall use vector notation_ thus

Henceforth the n-vector x

state of the system at time

will represent the state of the system in question. The

t will be denoted by
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(1.2) _(_), (-_ < t < + oo)o

We assume that the known laws of physics govern the system's evolution in time, and

that these laws lead to an ordinary differential equation of the form

(1.3) = F(x), x(O) = Xo, (" = d/dt),

where

F (x) (x1,x2, ...,xn)
F= =

Fn(X) \Fn(Xl,X 2, .-., x n)

is a vector-v_lued function, or 'vector field' defined on the system's state-space.

Undervery general conditions_ there will correspond to each initial state x
O

solution of (1.3),

a

(1.4) x --x(t;Xo), (x(o_xo) --Xo),

which is unique. The vector-i_nction X is called the _neral solution of (1.3)) it

satisfies the relation

(1.m) _x(t;xo)/a = ;(x(t;xo))

identically in the variables t and x . If
O

(1.6) x(t;Xo) = xo, (-oo< t < + oo),

then we call x
O

an equilibrium state, Obviously, when (1.6) is inserted into (1.5)

- 6 -
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one finds that

only if

_Ja F(xo'=0= h, i.e., that x = x
O

is an e_uilibrium state if and

(1.7) FkXo_; :=0.

We consider here only those systems which have precisely one equilibrium state.

[In a preliminary analysis many systems can be represented by such a mathematical model, at

the cost of slight over-ldealisation. The effects of such a s_mplification can be investi-

gated later_ after the broad features of the system have been fixed].

By an elementary change of variables, we can assume without loss of generality, and

henceforth we do assume, that the equilibrium state has the coordinates

(i. 8) _ = X 2 ..... Xn O,

i.e., that it is at the _ x = 0 of the state-space.

Thus we confine attention to systems of the form (1.3), subjected to the constraints

(1.9) F(0)= 0,

(I.iO) F(_)/ o _f x/ o.

We shall call a dyrmmfical system a control system if it has the property that _-

less of its initial state the system's current state always evolves toward the equilibrium

state as time increases. In other words_ regardless of Xo3

(io ii ) X(t_ x )*0 as t _+ oo.
O

In mathematical terminology_ the system (1.3), (1.9), (l.lO)represents a con±rol

if its equilibrium soiu±ion x = 0 is _qball_ asymptoticall7 stable.

-7-
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If F(x) is a continuous vector field, then (l.ll) represents the best control action

that can be obtained, namely, the s_stem tends asymptotically to equilibrium; eventually

the system will be arbitrarily near to its equilibrium state, but this does not occur until

after the lapse of a corresponding arbitrarily large interval of time.

However, if F(x) is allowed to have discontinuities, then the situation is quite

different; in fact, it is then possible for the system's state to reach equilibrium in a

finite length of time.

Thus, instead of (1.11), we may consider the possibility that

(1.12) x(T;xo) --o, T T(xo) > o.

By the general solution of (3) we now mean a function of the form (1.4) which is,

for each fixed Xo, a continuous function of t, and satisfies (5) at all times

(i.13)

where the switchin 6 times

(1.14)

ti < t <ti+l, (i = 1,2, ... ),

[ti] form an unbounded monotone increasing sequence

0 -_ tI <t 2 < "'" < t k <tk+ 1 < -'-

(1.19) t. -_+ oo as j -_+ oo.
J

Furthermore, denoting llm _(t k + _),

(1.16)

e > O, as

_(t k + O) = _(tk) ,

c -_0, by _(t k + 0),

J

(k = 1,2, ..., ).

we require that

Thus we allow the graph of the curve X(t; Xo) to have "sharp edges", i.e., discontinuities

in its tangent line, at the times t = t., ( i = 1,2,3, ... ), and we require "continuity
i

-8-
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on the right hand side" for this line0

Generally the designer of a control system will have certain elements of the system

at his disposal and others which are given and cannot be changed. An extremely common

situation is that in which F(x) = f(x) + Kc(x), where the vector field f(x) is given,

and where the linear vector function or matri_____xK = (Kij; (i = l, ..., n), (j = l, .o.,n))

is also given, but where the control function c = c(x) is not known in advance.

Since no infinite forces or torques can be realized in a macroscopic physical system,

the components of the control functi on will necessarily be subjected to limitations of the

...... are alsoform Ici(x)l < (_i_ ( i = 1,2, ., n), where the constants (Zl, 52, ' (_n

known in advance.

Without loss of generality, one can assume that each of the bounds 5. = 1
I

otherwise replace ci(x) by ci(x) _i

where A = diag (_l_ 52, ..., _n).

[for

(i = l, o.., n) and replace K by the matrix KA,

1.2 STATEMENT OF THE PROBLEM

STABILITY PROBLEM_ Given a control system of the form

(1.2.1) _--f(x)+ Ko(x),f(O)--O,x(O)--xo,

where f and K are specified in advance_ can one choose a control function

subject only to the constraints

c(x),

(1.2.2) 0 -_ I_ i(x) I _- i, (i = 1,2, ..., n),

in such a way that the 5eneral solution X(t; Xo) is well defined [as in (1.13)-(1.16),

except for states x at which c(x) is discontinuous]_ and satisfies (1.12) for ever_

admissable initial state x .
O

-9-
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TIME-OPTIMALITY PROBLEM. Supposing that the answer to the Stability Problem is

affirmatiye , can one choose a _articular control function c = u(x), lui(x) 1 _ l,

(i = l, ..._ n), in such a way that_ referring to (1.12), the transition times T(Xo)

are always smaller than for ar4v other stable control [i.e., more precisely, such that

(1.2.3) 0 < _(Xo;[u(x)])___(Xo_{c(x)})

whenever [c(x)] is any stable control satisfying (1.2.1), (1.2.2) and 1.12)].

DEFINITION. By the transpose x* of a column vector

we shall denote the row vector x* = (Xl, x2, ..., Xn). By the transpose K*

= are the column vectors of K,matrix K = (Kij) (_, k2, ..., kn) , where ki

denote the matrix

of a square

we shall

that is, K* = (Kji) where now the rows and columns are transposed. By the Jacobian

matrix fx of a vector Ikmction f we shall denote the matrix fx(X) = (_fi/_xj), i.e.,

(1.2.5) fx(X): ([gr_fl(X)]*,...,[gradfn(X)]*)*,

where f. are the components of f, and where by the 5radient
1

function _(x) we denote the column vector

grad _ of a scalar

- l0 -
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(i,.2.6)

Grad q) =

_/_n

In case _ = _(x, y) then we denote by grad(x)qP and grad(y)q_ the results obtained by

considering, respectively, y and x as constants.

DEFINITION. The scalar Rroduct x-y of two n-vectors is given by

(1.2.7) x-y = xlY 1 + x2Y 2 + ... + XnY n = x*y = XY*

where the m_tricial formulation x*y corresponds to the usual rules of matrix multiplica-

tion_ namely_ if A = (al, a2_ ..._ an )* is a matrix whose rows are ai* , (i = 1,2,...,n),

and if b

(1.2.8)

is any n-vector, then

Ab = (_l*b, a2*b 3 ..., an*b)* ;

and if B = (bl, b2, ..., bn) is any matrix whose columns are bj*, (j = 1,2, ..., n),

then

(1.2.9) AB = (Abl, Ab2, ..., Abn) = (ai*b j).

DEFINITION. The length Ilxll of an n-vector x is defined to be

(1.2. l0 ) _x _x 1 x2 o 2llxll = + x _ + 2 + + ... + Xn

DEFINITION. If y is an n-vector, by sgn[y] we shall denote the vector

- ll -
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(1.2.11) sgn [y]=

sgn[yI] 1
sgnlye]

sgn [yn ]

where by sgn[_] if G is a real scalar, one means

(i. 2.12 )

+I, if _ > O,

sgn[f_] =#, if _ = O,

51, if _<0.

A
DEFINITION. By the exponential e of a matrix A one denotes the clearly convergent

series

oo

A Z Ak/k.'
(1.2.13) e =

k--O

where, as usual, O_ = I_ and where by A ° one denotes the identity matrix

(1.2.14) I = diag(l_ i, ..., i).
n

Note that if A is a constant matrix, the general solution of the linear differential

equation

(1,2.15) _ = A_, x(O) = xo

is given by x = X(t_ xO) where

tA

(1.2.16) X : e Xo)

in fact_ term-by-term differentiation of (1.2o13) [which can be justified] shows that

- 12 -
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(i, 2.17 ) (etf)- = Ae tA"

hence _X/_t = AetAx = Ax_ and the proof is completed by noting that, from (1.2.13)
O

o in ' x = x .e = whence X(0; Xo) = In o o

1.3 HISTORICAL REMA_

A special case of the Time-Optimality Problem which has been intensively studied is

that in which the given part of the system_ f(x), is linear_ i.e., f(x) = Ax_ A = (Aij).

Then one considers the problem

(1.3.1) : _ + _c, x(o): xo, Icil_ l, c(o)= o.

This problem (1.3.1) was first studied in the case n = 2 by engineers such as

MacDonald [6], Hammond and Uttley [7], and Feldbaum [8], and by such mathematicians as

Bushaw [4]_ and LaSalle [5]. A summary of this work appears in Tsien's book [3].

For arbitrary dimensions n the problem (29) was first considered by Rose [9],

Lerner [10]_ Feldbaum [ll]_ and Krassovskii [12]. In 1955, an elegant partial solution

to the problem was given by Bellman_ Glicksberg and Gross [13]. They first considered

the problem of finding c not as a function of x, but as a function of t [that is,

they considered "open loop" instead of "closed loop"or feedback control]. Their result

(slightly generalized) is that the system

-tA*

(1.3.2) _ : Ax + _ _[K* e yo], x(0) : x°

is time-optimal whenever

(i) the vectors Kel3

independent, where

eI 2 n)---- ( e eIn , 3 -'o_ •

AKe i An-iKe i,2 ,,o_

e j are the fundamental unit vectors, that is,

(i = i, ..., n) are linearly

- 13 -
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(ii)

f. ° o

kill)

II "_l II

for e_ery _o' tie XoH-_° as t _+ ®

the vector Yo = g(Xo) is chosen to correspond uniquely with x O

certain manner.

in a

The condition (ii) is equivalent to the statement that all eigenvalues of A have negative

real parts, which can be ascertained by the Routh-Hurwitz Stability Criteria. Although

much work has been devoted to the question (iii) (cf. [12], [14]_ [15]) and, in principle,

effective methods for establishing the correspondence Yo = g(Xo) are known_ the practical

specification of the function g even for n = 3 is a very difficult matter.

Thus, when (i)-(iii) hold, the time-optimal control law for (30) has the form

(1.3.3) I_. ) _ sgn[K _ e-tA*ye] = ).c_3 xo ' Yo g(Xo

Now, in general_ if c(t_ Xo) represents the optimal control of (1.2.1) as a function

of time, then the optimal control u(x) mnst satisfy

(1.3.4) u(x(t_Xo)): c(t;Xo),

a statement which Bellman [16], [17] calls the Principle of Optimality. Clearly, then,

U(Xo) = u(X(0) Xo) ) = c(0) Xo) , and since this holds for arbitrary initial states Xo,

one has

(1.3.5) u(x) --_(o_x).

Applying this to the special case (1.3.3), one finds that for (1.3.1) the optimal

control is given b2

- 14 -
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(1.3.6) u(x) = sgn[K*g(x)]

I where g(x) is the same function of x tna____tYo

I

I
I

is_ as .a function of Xo, i__nn(1.3.2).

The results (1.3.2) and (1.3.3) are not stated explicitly in matrix notation in [13],

-tA*
and in particular_ it is not evident from [13] that c(t_ Xo) _nvolves e . However,

in 19_ R. Bass from the work of Bell_n, Glicksberg and Gross_ noted the results (1.3_3)-

(1.3._) and made the following reformulation. Consider the sFstem

i

i

(1.3.7) k = Ax + K sgn[K*y], x(0) = x
O

and its "ad_oint s_stem"

i (_.3.8) = -A'y, y(0) : Yo'

I
I

I
I

I

I

as a simultaneous 2n-dimensional sFs,t,em. If the function g(x)

each x° / 0 there is a T = T(Xo) > 0 such that

(1.3.9) if Yo : g(Xo) then X(T(Xo); Xo) = 0

then the sFstem

(1.3.10) = Ax + K sgn[K*g(x)], g(O) = 0

is the time-optimal.

These published results (1.3.7)_(1.3.8)_ (1.3.9), (1.3.10)

has the property that for

in 1956 [18] explicitl _

i

I

suggest that the ad_oint sFstem (1.3.8) can be used for numerical tabluation of the optimal

control law g(x) as follows.

I
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Simulate the system (1.3.7)-(1.3.8) by means of analog or digital computer. For each

fixed Xo_ vary Yo until, by trial-and_error_ a value go is fo1__ud such that with

x(0) = Xo_ y(0) = go_ there is a T > 0 such that X(T_ Xo_ go ) = 0. Then repeat for

t ) can be constructed. But sucha different xo. In this way a table of pairs _go_ x °

a table defines a function g(x) sach that g(Xo) = go for every Xo_ and then (1.3.6)

gives the time-optimal control law.

To be sure 3 the preceding prescription represents a formidable task - clearly un-

feasible for verj large value of n. Nevertheless_ drastic reductions in the amount of

computing can be made_ as will be indicated later. Since 1956, well-known classical re-

sults about the Hamiltonian formulation of the Problem of Bolza_ the Weierstrass E-Function_

and Hilbert_s Integral_ and in particular the necessary maximality of the Hamiltonian as

a function of c have come to light. Taese lead at once to (1.3.7)-(1o3.8) [when trivial

modifications to allow for constralnts of the form Icil __ 1 rather than Icil < 1 are

made in the classical statements_ cf._ e.g._ Caratlheodory's book [19] and Breakvell's

paper [20] ].

Independently_ the same problem was considered in the USSR by Pontrjagin and his

collaborators Gamkrelidze_ Boltianskii_ and Mishchenko. In 1956 Pontrjagin announced [22]

a conjecture regarding the time-optimality problem_ and in 1957 and 1958 the conjecture was

proved true ([23]_ [24]_ [25] ) under conditions of great generality° Their result, called

the Maximum Principle_ contains the preceding results (1.3.7)-1.3.10) as a special case,

and generalizes them to a wide class of nonlinear systems.

1.4 FORMULATION OF THE MAXIMUM PRINCIPLE

DEFINITION. By En_ or n-dimensional Euclidean spac[, we denote the set of all

n-vectors, x_y, ..._ considered as the radius vectors of points, with the distance

between two points defined by means of the metric

- 16 -
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(1.4.1)

where by Jx + _y; for arbitrary numoers _ and _ one denotes the vector with com-

ponents _x i + _yi o The set of all points having radius vectors x such that o(x_ x o) =

Iix-xoII< R i_ calledt_e_al neighborhoodof x° of ra_iu_R. A s_bseta of

En is o__ if each point g in G ihas some spherical neighborhood [so small that it can

be] entirely contained in G. A s_/bse÷; F is closed if its complement G = F c [i.e._

the set of all points of En not in F] is open. A set D is bounded if it is contained

in some [sufficiently large] spherical neighborhood of the origin.

TEE MAXIMUM PRINCIPLE. Consider the nonlinear °_ -__$rnaml _a_ s_stem

(1.4.2) _ : f(x,_), x(o)= xo, f(o,o) = o

(1.4.3) x in G, c in C ((0,0) in G C)o

where G is an open sffbset of En; and C is a closed and bounded subset of _n we

suppose that both f and f are conti_uous functions of (x_ c). Suppose that it is
x _ c

{ ) in such a way that it satisfies the con-desired to choose the control function c = c,x

straint (1°4._3) and that the general solution of _1_3.2_ l X = X(t] Xo} [c(x)] ), is defined

for all values of x ° at which C(Xo) _-iscontinuous_ and, for each fixed such Xo_ __isa

continuous piece-wise differentiable function of t which satisfies _X/_t = f(X; c(X))

_lues of t at which c(X(%_ x )) is continuous_ a_ which; for eve_ admissiblefor all

x satisfies
o

(1._._)

for some number T = T(Xo; [u(x)._) > O°

c = u(x) such that

If now there is a time-optimal control function

- 17 -
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(1.4._) _ < _(_o_ {u<_j_)__r(_

for all admissible control functions [c'_,x")j_

conditions° Define

z_st satisfy the following

(1.4.6) ' ) "'_x_ )1c.(_ x° o

define the scalar function

(_.4.7)

and consider the Hamiltonian syst,em

(1.4.8) f(x__..(+_%)L _(0) = x°

(1.4.9) = -grad, _91 ., ,. ))y_:: -fx ,x_ c..z; Xo. " y(o) --yo .

Then for each admissible x
O

X(t} Xo) of (1._o8_.)satisfies

there is a
XYo : g ) such that, the general, solution

(i. 4. i0 ) x(_ xo) --0

for some T > 0 and such that

(i.4.1i )
"0 0 --

while for 0 _ t _ T = T(Xo)



I
I
I

I

I
I

I
I

I
I
I

I
I

I

I
I
I

I

(1.4.12) _p(x(t), y,_j_'+'" c,(i._ Xo) ) = ¢(x(t), y(t)}j"

where _ by definition_ for all x i_nn G an__dy in En

(1._.13)
c inC

Furthermore, fo_r 0 -_t -_T(Xo) _

(i. 4.14) m(x(t); y(_)) o_t; xo)) .--_o -_0.

Finally, as a consequence of (1.4.6). and (!.4.12)j one has that, for Yo = g(Xo)'

(i.4.15a) m(x(t),-y(_)_ _(_(t)', = _(x(t), y(t)),

and, in particul.ar,

(i. 4.15b ) m(xo, yo_ U(Xo))= _(Xo_yo).

COROLLARY. If for each admissfble x one can solve the boundary-v_lue problem
o

(1.4.8), (i. 4- 9), (i.4.10)_ (i. h. ii)_ then the correspondence between the initial state x o

and its conjugate initial state Yo -- g(Xo) defines a i_nction g(x) which must satisfy

the Maximum Principle

(i.4.16a) _(x_g(x)_u(x)).--¢(x,g(x));

that is,

(i. 4.16b )
cin C

f

Frequently_ the principle ki.4.16) enables one to determine the optimal control

...... - 19 -
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function u(x) in a unique manner.

For example_ _ons_der the time-optimal_ty problem for (1o2o!), (1.2.2).

f(x, c) = f(x) • Kc and so by(i.h_15a) and (1.4.16a)

Here

(1.4.17) y_f(x) + yoKu = max y°f(x) t yoKc_

i_ii__i

that is_

(i. 4.18 )
K*y.u - max K*yoc = Z ![K*Y]i!

!ci i_,i i:l

which is obtained by the choice c: = sgn[K*y]_. Hence

(1.4.19)
n n

iZl ui[K*Y]i =iZ--l[K_-Y]ii_ -I _-uo __ i_
i

which implies that_ for Yo = g(Xo)_

(i.4.20) u = sgn[K_y].

Similarly; use of '<i. 4.16b) implies that

(1.4.2i) U(X) -- sgn[K*g(x)]; (g(0) = 0)).

Thus we may state the following result; discussed below.

REFORMULATION OF THE TIME-OPTIMALITY PROBT_EMo Consider the bonndar_-value problem

defined bzthe simultaneous s_stems

- 20 -
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(1.4.23) )y_ y(0) yo_ llyoli = 1.

Suppose that for each x ° _ 0 there :is a T = T(Xo) > 0 and a corresponding unique

Yo = g(Xo) such that (1°4.22) and 'Ioao2.5/ are sat_sfiedo Then the optimal control law

for the system (l,.2.1) is given b_ (1°4o21_o

NOTE. If, for some partic,_lar index j; [K*(Xl)g(xl)] _ := O; it may be seen 'by in-
o

spection of (1.4.17)-(1.a.21) that any value_ suojeet to the _ond:ition -1 -_u.(xl) -_ 13D

may be selected for a,' ). In-tn_s ihe ti.me-opt_mal control function is not
J _xI c.a_e_

• _,JE'j. b_] 1_1A_-I.%.&I_£j_ Ij .A. _J.I..I._l_J_-mnlque u_u±_±_u_ may be imposed to find the most preferable time-

optimality control.

1.5 RESOLUTION OF THE PROBLEM

In summary_ we may state the fo_owlngo

RESOLUTION OF THE TIME-OPTIMALITY fROBI_Mo If the function

correspondence Yo = gkXo) g k'_] = 0 _etween the ini±ia/, states

satisfy the equations (lo 4.22 and _i° h° 25) then

g(x) is defined by the

(Xo_ yo) which uniquel_

(1.5°1) "= f(x) "÷ K sgn[F#g(x)] is a time__+imal control system.

REMARK. If_ in (1.2.1) one allows K = K(x) instead of E ---constant, then all of the

statements concerning (l.o4° 22) (lo 4. 215) and (Io5° i.) remain valid provided that one replaces

the adjoint system _ = -f _(x)2 b2
X

21 -
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(i._.23 his)

f
Ic = sgn[K*_x)y]

" "f i= -ty.f(x) * _*(x)Y'_"xi
!

ic = sgnLK Ix)y]

: -fx*(X_y - ,,,_,

Incidentally, in practice it is fax" more _onvenient to define the adjoint system as in

the first step of (1.4o23 bis)_ and then to carry through the indicated calculations in

each special case_ than to c_lculate the Jacooian matrix f (x) and thento transpose it.
X

In fact, for large n the matrix fx(X) may nave zeros in almost every position, and

n

keeping track of them can be extremely ted_aus_ whereas taking the gradient of i_lYifi(x)

is very efficient.

n

Similarly 3 it is far more convenient to calculate the gradient of i_=lYi[K(x)c]i than

to use the general formula ([K*(x)Y]x)*:o Some examples of this will be given elsewhere

[26], [27].

It should also be noted that the _xi_am Principle_ as proved in [25]_ is a necessary

but not a sufficient criterion. That is_ if one calls any control function obtained by

the principle an extremal control_ then the theorem of [25.] asserts only that every opti.mal

control must be an extremal control°

If# however 3 there is precisely one extremal con trol_ then there are just two

possibilities :

(a) there is no optimal control; or

(b) the exfiremal control is optimal°

- 22 -

I



I

I
I

I
I
I

I

I
I

I
I
I

I

I
I

I
I
I

In this way one tannin pzact_ce_ often by-pass the difficult question as to whether

or not an optlmal control exists. In fact_ _f '_ne adjoint-system approach establishes

that there is precisely one extremal control f_nc_ion_ then this function will certainly

provide a stable control; then th_s function w_ll ce_ta]nl_ provide a stable control: and

the practical suitability of such a control can be investigated by a computer simulation.

To be sure_ the theoretical possibility exists that the extremal control does not provide

time-optimal control, but rather only the analog of a fiex_point of a curve or a saddle-

point of a surface_ i°e°_ a "_time-stationary _ but ne_her time-minimal nor time-maximal

control.

Further study of this question is clearly indicated° It appears likely that under

_a±_u±_ a_pu_n_ _n_ _,_xlmum Principle prov.ldes conditions which are not only necessary

but also sufficient for optimality. In fact_ in ].999 Breakwell [20] published a sufficient

condition for the existence of optimal control which is extraordinarily similar to the

M_ximum Principle; however_ _n his for_]/at_on a problem Js degenerate if 3 for example, the

matrix K = (_,k2, ...; kn) in _1.2°I) has more than one non-zero element in any one of

its constituent column vectors k,_ (i = 1_2_ °.._ n). Since this restriction rules out
I

some of the most important practical problems known_ an investigation of the possibility

of extending Breakwell's sufficient conditions would be most desirable.
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2.0 T.H_0RET!CAL _n,_m_,_qN r_- __'_M _ _ •.... _ _

._ . _ °2ol The Va_datiomal App!.c:9._i\:9{. a=_==c_s_la_ion of the _ynt__esms Problem.

(i "_ System Dyr_.am_Acs_ ]!ke _'c.iu_:_on of <he dyn___£cal system, represented

by the Sime dependent sta=e vector o:' CL_W÷ _;"tl)eEe is assumed to be determined

by the differential system

(z) _ : f(x,_(_)',

with

_(o) =,
o

where x is the initial state and u(:_)cE _ _he cont,rol function. (If the vector u
o

depends only on the sta_e x_ as d_fin:_f_=_e_ u is called "instantaneous state

feedback "control function"]_

(2) a_ The class _ of a__issibie control functions is defined by means of

an _*_ bounded._ ..............._-_ _ _..... En _..............

continuously differentia_le fo_nctions u(m) im some subse<, R of E n. Explicitly

(2) _ _ [u(x)_xdR; ,aEU. u(x)dC°_ D_: u(0)= 0,_

where: RC__En_ R open: {x : 0_{R_ and

U_ _n U open and bounded._ _on-,.rex

C° =_ class of con_.inmous fenctions

*This means that there is no saturated (discao÷,in<]ou_:) eont.rol

here to continuous con%rol (Cse_J , or boundary of U_ only).

Cs_ as we are restricted

|
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CI _ class of continluously d_ffe_mt.iable f_f_ct,!ons everywhere in R_E n

D' _= class of functions eontlnuousiy _ififer_ntia01e in an open dense subset R°

of R, _._e. a se_ of Ro smcr_ _.h_t R °c R and R ° 6] R = R.

The condition for _= ......t.....range of c_,r,_.! .£,_c_ioc t3 oelong to a certain set

a £ U_ for all x _ R

is called the "control constraint"_

We shall distinctly say either u_ olf u6U_

b. Controliabilit_y_ and st.albilit,i domain_ the dynamical system (i)

is asstuned to be controllable in F., _bat i_ _ is non-empty (with respect to R)

so that for any x cR_ there exists so_÷ _ime T and aL least one of the ue_ such that
o

The region R is called t-he sx.a%.iiit:£domain of she system with respect to the

class of control functions _, and _ is the tra_usition tim__ebetween the states

Xo(O ) and x = O.

(_) Liapunow function and _iobai _ic stability.

(a) Let, f(x,u) be a vest,or :function continuously differentiable

everwhere in R o

with the property

• %

f_O,Oi : Oo

We shall first assume Lhaz a Liapuno_7 fmnc<ion relative to f(x;u)

exists, according to the following hypothesis on _ and definition.

H_pothesis on _ o Fo_ each u_ there exists a real function

with the properties:

and to the class _-_

_(x) on R gE n

- 27 -
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(_)

(i)

(ii)

9(o) = o, _(_) > o.ir :</o

+co as x--_76P if R is bounded, or

0(x) --_ +co as Ilxll ---_c, i_'__ is unbounded

(iii) the Lie der:ivati_ o:f o;x] is rlegat:ive defin:ite_ i.e.

f(x,u(x))_grad o(×) < 0, for z. / 0

Definition 2olo i funct.ion 0(x) def'ined on RCE n with the properties (i), (ii),

(iii) is called a Liapunov function relative t;o f and to the class of controls _g.

Le_ma i.

above.

for all xeR and t_l

(i) _!_,t,)
dL

Consider the vector fumczion :fi,x,u/_< _.such that f(O,O) = O, as defined

For each ue_., there exis_._s a veeT_o__ function F(x,t)eC I.

F: Rx7. --_E n

• -- , ÷ ,_ wi_z z._/_.eproperties:

= , _n'F_ ;< t.'i',_

(ii) F(x,0) = x for every x_R_

(iii) F(F(X,tl),_2) = F(<_ 1 : t:_); for every x_R and tisI+,

(_v) F(_,t.) ---) o _s +.--e +_, _....... z every xeR.

Proof. it follows i_._effia.t_siy =-- -- fl(x)-._.J:_ r_.c-f_.::'fii-_. _g" of
• j o

It is now immediate, as a corollary

Lemma 2. For any x° ::O, x° e ?, and i,._ _: ; ._h=r___ exists in

x(t "_ _' * " "_" defined as is Lemma 1;
. : , \X _ _ , . ."

with the properties

R a vector functions

<i._ _X_U_X_ _ _ X : _
C

(ii) X(t:'." / 0, t e .:

(iii) X(t) -- 0 as _ "co.,

= d/dt )

In other words, F(x,<.) is <_,+ __ener_i sclu_.icn of" x : f(x.,u(x)) with the arbitrary

initial condition x(O} ::x° _ N as is gisb_ii_ _ _ _ "_,. _ _<_np,o_a_ally stable in R with

respect to _ .

Proof: It follows from Lem_ma i.
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(b) Consr.m]c-tJon of a:Liap_no? Pun ctiono _ We shall now heuristically

"construct" a Lia_,uno\, func_.ion af+ e_ <h_ _foiiowim6:

Definition 2_2o For every

with the p_oQerties

(ii)

_,__ . ._d_'........_.___a son-nega_.ive real function _(x,u)

_EC I

_.(o,o) )= 0

grad,. _ (0<_i _ r ,"de tic'_lly with respect to U)
kx] "" " _ _:

c_ ez:is_s.

F."_: each x_.R and u_

(iii)

÷ _ such." fu_,<'tionOne can always asstm_e _,n_....

Definition 2.3 (Performanc__!._De_:]oo '_

function 9: R --9 I
+

define a real

by <he foii::.wi_ _r_'egraio waich is in fact a functional:

_(_,u)where

function is called pe_"_<,,_nan:'e........... ]ade_." _,_ _,_._rman_e_'__- criterion"

theory. (b) Accord:in6ly_ -_r.doy _;r.ed_initi:__. :d x(t) = F(Xo,t),

is equivalent to

is a defini%e '_'+" ......._ ..... _ real _unct_cn as defined in Def. 2.2. This

in control

the 9 above

CO _- u _.._! x; -c ) dt

o

(where, since F was defined for ewrv z: aR_ < and x have been interchanged).
" O O

Hypotheses on 9o

io The 5ntegral deiS:.'_i_qg

2. q_D I and therefore g:rad ?

_';,zj .fc_ <:_'ery ue _]_ _ converges and thus 9 exists.

e_ in _o_R (i.e. piecewise in R) (I). We shall

(i) More generally one co,_id s.+_ate tta_, _ is _mo,. h almost everywhere (a.e.) in R

I

I

and thus grad 9 exists aoe. im R_

is said to be "Regular in__P,o

!]r_d_r _i_ mcre restrictive hypothesis 2 used here,

I
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prove now that q_(x) so defined is a liapunov function.

Lemma }. For each u(x)e_ . q0(x) o+_"Def. 2.} is a Liapunov function (Def. 2.1).

Proof. First it is clear t_a_ by ff_lri+ion _ is positive definite with

qD(0) = 0, which proves conditions (a', l_,",a_d (ii)o Second, let us prove (4) (iii),

i.e._ the Li___eederivative of _(x) is negative definite. For this purposej it is

sufficient to prove an even more particular property which characterizes q_(x)_

namely

(_)

for every x_R, with _(x,u) > 0 as defined°

Proof. If F(x,t) is the genera___ soluLion of i = f(x,u(x)), then (calling _eI+

+00

0

which holds for any xeT.

By (iii) of Lamma i, the same can be written

+co

_(F(x,_))= f
o

J C, j+T ,. ;

Setting @ = q + t_ do = d@, with t < @ < +co; and again (writing _ instead of @):

_(F(x_.. : . .
t

The derivative of _ witm respec_ to o is t_en (writing again t instead of o)_



dt = _t

= f(F(x,t'l_ u(F!x " '_'_';

= -47_%_ X,t . u_T_',X,t;_. . , ,

• _ of Lemma i and from "Hypothesis on _',for tel+ and xER, as follows fz_om (i

(4) (iii). Setting t = O. by (ii) of Lemma i stating that F(x,O) =_ O, the

identity (5) follows, i.eo the Li___derivative of q_ is negative definite,

(6) f(_,_,_(_)).gr_d_(_) < 0 for _ = 0

_, 0 for x = 0.,

hence, by definition, re(x) is a Liap_no\, f,_iction relative to the class _t. Q.E,D.

The control problem involves the following_ We are given a smooth control system

of the state vector form

(v) _ = r (_,u) x(O) -- Xo_R ("_/_t)

where

(8) f(o,o) = o

and we desire to discover a smooth function u = u(x) such that, for some open subset

U of En,

(9) u_U for all x_R,
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and such that

(io)

and

u{oi = o,

_(t)-_o _ o<t @+_.

We have called such a u(x) a_a admissible control law. It can he shown that a control

ucU law is admissible if and only if there exists on R a positive definite

function q_(x), and on RxD a positive definite function _(x,u), i.e.

(12) m(_) > o, _./ o; re(o) = o;

t±3} _(x,u) > o, (_,_ / o; _(o,o) = o,

such that _ is a Liapunov ftuu_olo_ for (i) and -_ is its Lie derivative, i.e.

(14)

identically on the domain of stability R, .In fact, we assume that such a positive

definite function _ exists. (Cf, Hypothesis on _)o

As an immediate consequence of (14), we have that

(15)
+co

ep(Xo) = I (x.(x(_), u(x(t)))dt.
o

Conversely, if we are given .an admissible control u(x), and a _erformance i_nn-

dex _(x,u) which defines a performance criterion 9 as in (15) , then the convergence
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of the integral in (15) for all x ° in R implies that (14) holds in R.

The variational approach cons/_Ls in determing a function u(x) which mini-

mizes the functional _(x) over F_

Definition 2.4. Optimal control _aw " 'cLx,[ _s a single valued vector function of the

class [{ of "admissible" controls suc'h tha1_ it minimizes (absolute minimum) the

functional q_(x) _> 0 (Def. 2.5)

CO

(16) _(xo) = f _<x,o(x))dt--mn.,
o

(_ defined for any Xo6R ) with respect of all the control functions of the class.

This property is also expressed by saying that

[17_
'r - ____ t h_J ,' " "I.'',_.,h<-_,"

for all ue_L and x6R - 0. Let us denote by {_] the family of al _(x;_).

First Fundamental Hypothesis. It is assumed that c(x) exists (and thus _, the

absolute minimum relative to _ , exists)°*

A_ilia_ h_othesis o± {99 • Themin_== _ is attained(relativetoLD.

Definition 2. 5 Conjugate state or co-state of a system is a single valued

function y: R -gEn_

(18) y : y(x)_ -gr_d_(x),

defined piecewise in R, i.e., in R°C RCE n

R°C R and hence grad _(x) exists in R°C R).

(assuming that _(x) is _mooth in

One also says that y is the

*We do not assume that c(x) is unique. ]it is clear, however, that _ (absolute

minimum) is unique.
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co-state of th___estat___ex_j.

Definition 2.6. Th___eHamiltonian of a dgaa_m_cal systenn is the single valued real

funct ion

(19) H(x,y,u)_ y°1_(x,u)-_(x,u)

defined on R_Enxu (with (z(x_u) as per Def. 2,2).

Second _t_l Hypothesis° The H_m_i_onian H has a _ with respect to

all control vectors ueU

u C]

Definition 2.7. Define a vector function c(x,y) for every y En_ such that for

all y's, c(x,y) = c_U and such that

(21) _(_,y,c(_,y.,) =' '- _ = H',x_y)

Remark. _(x,y) is not necessarily single-valued.



I

I

I
I

I
I

I

I
I
I
I
I
I

I
I

I

2.2

me nt

Pontrjagin's Maximum Princi_!e

The statement that u(x) _s an admissible control law is equivalent to the state-

which is equivalent to the statement

(i) s(x_y(x)__(x))_ 0.

Hence we may use as a mnemonic the remark that "a control system is stable if

H = 0."

Now consider the choice of an optimal control D_nction c(x), i.e., one which

minimizes _(x ) for each x in R, Define
o o

(2) _ : _(x,y): ma_ _ y,_).
u c U

Also, define _ = _(x,y) as any function (in general, it may be multiple-valued as

stated before) which satisfies

(3) _(_,y)= H(x,y_Y(x_y)7o

In practice, it is easy to compute one can usuaily solve

(4) •
• u.

grad(u)H[x,y_c ) = 0

quite explicitly for _ = _(x_y)_ and verify that this

the usual methods of calculus.

c actually maximizes H by

Let us consider the following Lemmawithout proof.
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Lemma4. If c(x) that minimizes _(x) exists (Def. 2.4) and the minimm

_(x,y(x))also exists(forali y)_ _en

(7) H(x,y(x),c(_)=_(x,y(_))_=0

for every x c R = 0.

Lemma_. If there exits an optimal control function c(x) (Def. 4.1) and an

absolute minimum H(x,y(x)) of the Hamlltonian, then for every x c R,

gradr. ._(x,u(x)) .. A,___+ f* (x , c (x ) )" grad _(x:[c]) _= O,

Fundamental Theorem of the Maximum.

Let R En be an open set and x = 0 _ R, and U an open, bounded, and

convex set of En which also contains the origin u = 0 (Cf. 2.3).

Let, as established in Part 3(a), f: R × U _E n be of class C and

f(0,0) = 0. Let a real single valued function H: R X Enxu -_E' be defined by

H(x,y,u) = y.f(x,u) - _(x,u), with y = y(x) = _grad _. With these definitions:

Hypotheses: (1) Let consist of the non-empty class of all vector functions

: R _U such that (i) u(0) = 0, (ii) u(x) E C° on R, (iii) the

Jacobian Ux(X ) exists and is continuous on an open, dense subset R° of R.

(i.e., there exist controls with property (iii)). (2) There exists a real

function _(x) which can be defined as

_(Xo)_-/+ooc(x(t),u(x(t)dt
0

i



which is such that ._(0) = O_ ._(x) _-;0 if x / Oo

That is, combining (I)and (2)_ let be the class of "control" functions

u(x) _nd cp(x) a Liapunov function, such that ensures the glob_l asymptotic

stability of the differential system (i)_

= f(x,u(x)) x(0)= x
o

for every x° R (x° / 0).

(3) Suppose that _(x)

c (x) ¢ such that

has an absolute minimum and there exists a function

for all u E

Thesis.

Then c(x) must satisfy the following properties:

(6)
_(x,y(x),c(x))__o fo_all x _

H(x,y(_),c(x))= _ _(x,y(x),u)
uEU

that is, equivalently:

(7)
f(x,c(x)).grad _(x; (c}) : - _(x,c(x))

_(x,o(x))+ f(x,o(x))gra__(_ [c])_ mn _(x,u)+
u_U

+ f(x,u).grad _(x; [c] )

}7



Corollary !.

If there exists a unique c o °_(x_y) so Chat

(8) y.f(x,_) - _(x,_) = _ y f(_,u) - _(x,u)
uEU

then c(x) = _(x, -grad _(x)), and the first of equations (13) and the second of

equations (14) can be combined into the single property that the nonlinear

Hamiltonian-Jacobi partial differential equation

(9) f (x, c (x, °°grad q)))ograd q) = -<_(x,_)x, -grad q_))

should have a positive definite solution on R.

Proof: It is immediate from the Fundamental Theorem:

Corollar_ 2. For every x ° _ R it holds:

(io) : f(_,c(x))-=f(_,_(x_y))= graa(y)_(x,y)_(_,y))

_ith x(0): x
O

(ll)
= -fx*(X,C(x,y)_ + grad(x)_(x,_(x,y) = -grad(x)H(x,y,c(x,y ))

(12) y(o)= -[g_adm(x)i = x
o

(z3) #f(x,c)(x,y)) - O_(x,c(x,y)) - 0, t _ I+
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Proof. We have already seen in Le_s 3 and 4 that (6) and (7) hold. Also (i0)

holds by definition of c and Co Now note that with

y(t)- y(x(t))

it holds, by Lemma 5:

(14) # = -[grad qD(x(t))]xf(X,_(x,y))

for any x g R.

On the other hand, by (6) - (7) we have (15), with _(x,y) = c(x), whence

(15)

* _( - )(_3(x,y)) --o.+ Cx x,c[x,y))y - grad(u

But by Lemma 5, the coefficient of

hold.

c is zero.
x

Hence by (14) - '" _k±5), (ii) must

(_6)

for every state

to say that

x and co-state y = - grad _(X)o Another way of expressing (16) is

(17) c(x] V(x.y) y = grad _#_h

- 59 -
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This fundamental result can be summarized by the statement that "a control system

is optimal if, in addition to H = £_ one b_s also H = H"o

A sufficient condition for _.he e_istence of an optimal control c(x) on R

is that_ on R_ the Hamilton-2acobi Partial Differential Equation

(18) , rH<x,y,_.x._)) = 0, y : - grad 9

has in R a positive definite solution qg(x)o A more explicit way of writing (18)

is

(_9) f(x,_(x,- grad _))_grad 9 : -_(x,_(x, - grad qg)).

This nonlinear partial differential e_iation appears to be quite formidable; however,

for the case of a linear plant, f(x,a) = Ax + Ka, _ = sgn _ and a = l, it is

possible to find the genera& solution of (19). (This last ,example, with eonstraint._

I_il < 1 _a _(o,o) / o, se_ to violate the preceding hypotheses; however,

In conclusion, it is e_sy _..or_membsr T_he salient features of this (simlmlified)

Liapunov-Pontrjagin theory of the stabiliza_:ion and optimization of control systems

by remembering

- .kO -
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2.5 The Pay-Off Penalty and Tree.de-Off Functions.

2.3.1 Time-Optimal Conbroi

Consider the system

= f,x) + Ku u i < i,

and try to minimize the quadratic "cost of control" criterion

(2) _ _(xo) = r o ,.= , u Lt )" Qu (t) dt.
o

We shall show that this criterion, and the constraint luil _< i,

mode (or"linear-saturating") control law.

The Hami!tonian is

(3)

Hence

a;

(4) grad(u_H = K y - 2Quo

A detailed study of the situation at hand shows now that

(5) u sat 1 2)Q-= y

i L_3 a eiwhere e "sat = .Z and where

,f'Q, I_1_<.z;
sat CQ# =

lead to a dual-

I
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Now let f(x,u) = Ax + Ku. Referring to equations (18)-(23) of Example 1
;i

it is easy to see that setting y = - Bx in (5) causes (5) and the equations

(22)-(23)/of the following example to agree for all Ilxll< •, where • < 2/!!Q-IH,

IIKII IIBII. Hence we have the following result:

. < _-_t the matrix -/I be a stab_lit 7 matrix; so that the matrix %quation

i

(7) , ,: m* +AP:_Q-I_*

_s a posiZive definite solution

(8)< P= m>Oo

Then the system

(9) / _ : Ax * Ku,

bec_es 6_timai relative to the performance criterion

(_o) -.-.$(Xo) : ]_oou(t)oQu(t)_t
O

if for the optimallcontrol law u = c(x) one chooses

(ll) o(x)= sat[Ox],

(12) o = o(½)Q-1K*B, B = p-l.

EXAMPLE

Let U = En, R E n and consider a linear plant

- 42 -
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with a quadrati formance index

(2) c(x,u) = xoCx+ ._Qu,

j.

where the matrices

°" r

C ....and Q are positive definite_

Q = Q* > O. Then we have for the system's Hamiltonian

i.e., C = C@ > O,

¢

, H = H(_y,u) = yof(x,u) - O_(x,u) = xoA*y + u.K*y = x. Cx - u-Q_,

= xoA*y - xoCx + u-K*y - uoQuo

,,_ .... <_ -._._ ", ,_,

Now gra_(u)H(x_P,c ) = K*y ""2Qc = 0 whence c = c(x,y) is _,_

i

(4) K*y = 2Q_, c = 2 Q -K*yo

<. Also,'it is easy to verify that the Hessian at

/

F is negative definite, i.e.,

[Grad(u)H(x,y,u)] u = -2Q < O,

i

• '_ l_Q_l K.S(-x,y ; =2 *y(6)

provides a true maximum to H(x,y,_) on u = ff_o

- L.3 -
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(7) H(x,y _ H(x_y, o x.A*y x.Cx +

½-K*y_Q_IE*y _ ½K*yo Q-1K*y

and so the Hamilton-Jacobi equation is

(8a) : x.A*y- xocx _ 9o (_-iK*)y--o

(8b) y = -,grad q_o

Also, the Hamiltonian equations corresponding to (3) and (6) are

= Jy_ = XO

(gb) = -A*y + 2Cx, y<o) ---gr_d_(xo)

where

(i0) _(xo) = f+oo [xoC_,½_o<KQ_l_*)y]at.
o

Now define the 2n X 2n matrix _ by

A ½_Q-l_.)
2C _A* /

- 44 -
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and i + __.... , ......_e_ _ _t_i_ be given by

(12)
M(t), N(t) A

= e

R(t), S(t )

t

x(t) --M(t)x ° + N(t)Yo

y(t) = R(t)x ° + S(t)Yo "

Now suppose there exists a positive definite matrix B = B* > 0 which s_tisfies

the ½n(n + i) simultaneous quadratic equations in the _n(n + i) unknowns

Bij , i < J, given by

(14) BA + A*B - B(KQ-IK*)B = -C.

Then set

(19) Yo = "2BXo

and, inserting (15) into (i0) and rearranging the algebra, find that _(Xo) =

Xo'B.x o. However, x° is quite arbitrary, and B is independent of xo. Hence,

in general,

(16) _(x) = x. Bx) grad _ = 2Bx.

Thus equation (19) is equivalent to the statement that

- 49 -
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(17)
Yo = -gra__(xo),

i.e., y(x) is the co-state of x. Thus we have exhibited a,global solution

both of the two-point boundary value problem (9) and of the Hamilton-_acobi".

equation (8). Hence c(x) = _(x,y)-= -(½)[Q-1K*B]x. Thus we have pr_ved the

following result: The system

(z8) _ = Ax + Ku, x(0) = Xo,

is optimal relative to minimization of the performance criterion
¥

(19) QD(xo) = l+O0[X(t).Cx(t) + u(t).Qu(t)]dt,
o

if the quadratic equation

(20) BA + A*B - B(KQ'IK *) = -C

(where C = C* > O, Q = Q* > O) has a solution

(21) B = B*>O

and one sets

(22) u = Gx,

(23) a -- -(½)Q-1K._.
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2.3. 2 Constraints.

Consider the problem of attitude control of a space vehicle by means of

reaction jets. As we have seen, for time-optims_l control each jet-actuated control

torque (in, dimensionless units) should either be given the signum +l or -1. Such

a control is ,called BANG-BANG control.

We shall now prove that for fuel_mass-minimal control, i.e. for the performance

criterion _ defined below, the optimal attitude qcontrol must be what we shall call

BANG-COAST-BANG control.

In fact, the relevant two-point boundary value problem, for the performance

criterion

T

(1) _:I (l+_lc!)dt, _>0,
O

Iol = c.sgnL_] = Icll + ... + Icn l

has, with a constant-matrix K, the form

(2) _ = f(x)+ Ko, x(O): xo,

(3) 9 : -fx(X)y, y(O): Yo'

(4) x(T): 0, Icil_<l,

while.the.associated_Hamiltonian is, for W > O,

(7) H = y'f(x) - 1 + _ "(_- y - sgn

By the Maximum Principle

tire to (4), keeping x and

(H = K) we must choose c so as to maximize

y fixed. This leads to the results

- 47 -
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(6) o_..... -K_-!- _ .K , (i--l,...,_)

eI 2 ) = Iwhere ( , e , ..., en
n

It is clear,from the Bang-Coast-Bang control law (6) that as the fuel minimiza-

tion increases in importance relative to the time,minimization, i.e., as _ increases,

the law (6,) gives ci = 0 for longer time-intervals. (In fact,

i *
t I < t < t2, whenever #e -K y(t)I< _ for t I < t < t2).

A concrete example of the principle (6) will now he given.

ci = 0 for

. .

Consider the

problem of singla-axis attitude control. The governing moment equation is simply

(7) J$'+ _s_] : o.

It can be proved, by elementary reasoning, that for controlling (7) so that, at

a pre-speclfied (non-minimsl) time T > O, one has

0(_): _(_): o

while at the same time minimizing th__efuel-mass expe.lled

T

(8) _ : S Is_c_ I at
0

(where now we allow _E_] = o if o : o), one mnst use the control law

(ga)

(_)

(9c)

_'_ , _

= -_ •

It is clear from Figure 2.4.2-1 that as k -- i, the system (7) - (9) tends to

- 49 -



a irarely time-optimal system, wILile k --9 +oo, the region of coasting (with J@= O,

@(t) = const. ) increases and the system becomes more and more fuel-mass minimal.

The result (9) is basic to the subject of fuel-optimal attitude control.

The extension of this result to simultaneous 3-axis fael4nin/ma& attitude control

would be extremely useful. An _ppropriate version of this hypothetical extension

will be derived below.

Before exhibiting this 3-axis control, consider the subject of external torque

disturbances. If the system (7) is subjected to a disturbing torque d, Id| < 7/2,

and if d be regarded as a constant, then the time-optimal control of the system

(io) J_ + 7s_fo]= a,

is given by

(ll)
j _1_1

_--_+_" (1- [dh] sgn_ )

In order to mechanize (ii), one must measure d. This can be done by using, in (ll)

(12)
d

d = 7sgn[o]+ J _ [_]

where sgn_] and @ are readily measurable variables. Of course, d_3/dt is

corrupted by noise, but filtering and smoothing techniques can be employed. By the

notation

(13) d[@J/ dt

we mean a suitably averaged and smoothed measure of

- 50 -



Note t hal, if (1_) be in qe_h_dinto (11_ +_n +_ system _jf_n_is _÷ orgy tlme-

optimal but also SELF-ADAPTIVEto external disturbance torque variations. Furthermore

if the values of J and 7 used in (ll) - (12) are not correct, we can lump the

residual (or discrepancy) with d_ i.e._ replace d in the concept by

(14) d + (J -J)_ + (7 - _) sgnL_3

^ A 4
where J and 7 are the true values and J, T the assumed values. Thus, if (J-J)

and (T - _) be sufficiently small, the self-adaptive feature (ii) - (12) can compen-

sate not only for unknown external torques, (the unidentified environment) but for

lack of precise identification of the system's internal characteristics. Thus the

system (i0) - (ii) - (12) is truly self-adaptive.

In conclusion, we shall generalize this self-adaptive time-optimal control law

to all 3 axes. (The extension of the fuel-minimal law is quite similar).

The system is governed by

.i i (i=i,2,3)

(16) J_ + w@Jw = - Fsgn[g] + d

i (i=l, 2, 3). Alsowhere P = diag (71, 72 _ 72) and where e .g = qi'

(17a) @l =-Arcsin lu3 /Jl- (u3)2]

(17b) @2 = Arcsin [U3_

(17c) @3 =- Arcsin _Ul2 /_l- (U33_)23
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(!8a)
@i = Wl + _sin@itan@2_w2 - _°s@itan@_w 3

(lSb) ' _ _@2 = os@ w 2 + in@ w 3

(18c) • [sin_l Foos_-I

Now try the control law

(zg) _. =o. +--
1 1

J._ w._lw#
2Y i d.1

(1 - -- s_ _iJ)T.
" .L

(i=l, 2,3).

Choose the Liapunov function

3 3

(20) _: _.1/2Ji(wi)2+ z h/_#.
i=l i=l

= = w. = 0, (i=1,2,3) It can be proved thatClearly _ 0 if and only if @i m

3

i=l

whenever

(22) Idil<h / 3.

In fact_ differentiate _ with respect to time. Clearly

3 3

(23) _ : z wi(jh) + z _,__ _I-_7.__@

i=l i=l
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Now substitute Jw. from (16), and compute _. from (19), wherein one can
1 i

• 2 2
substitute @i from (18) and wi again from (16). Note that @i = wi +O(Qi_wi)-

Then by use of (22) and simple inequa.lity arguments_ the result (21.) can be obtained.

If _uH 2 + INii2, or equivalently if _ be sufficiently small_ then

3

$ _< - (i/12) r 7i_wJ.i
i=l

Clearly, _(t) is monotone non-increasing and tends to a limit. Now w i m O,

(i=1,2,3), implies that $ = O, whence _ = const. _ O, whence at least one |_i I _ O,

and so by (16), wi m 0 is impossible. Thus _(t) -_ 0 as t --)+_.

Therefore the control law (19) is a stable simnltaneous 3-axis quasi-optimal

control law in some neighborhood of the origin.
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3.0 Finding th___eTim____eeOptimal Switching Surfaces.*

Recently first computations of _gher order switching surfaces have begun at

Aeronca. Based on theoretical developments of D.C. Lewis and P. Mendelson it has

been possible to carry out the computation of an explicit closed form expression for

the switching surface of a plant of any order. That this has actually been done for

anyplant of order greater that two is in itself a milestone. Care is necessary,

however, in seeing these results, now carried out only for plants of third and forth

order_ in proper perspective.

To date it is clear only that linear plants with a single actuator, and then only

a special s_0class of these, can in principle be solved. It appears, however, that the

full class of linear plants with a single actuator can be successfully tackled.

It is possible that extensions to many actuators and finally to nonlinear plants can,

in principle, be pursued through generalizations and extensions of the methods that

have brought this first problem to bay. This is how it seems at this writing. But

at this writing a clear program leading to a reasonable optimal synthesis of the

Saturn control seems feasible. This is because the Saturn can be reasonably approxi-

mated by a linear plant with a single actuator.

In any case, examples of optimal control laws are now in hand.

With these results, it is also apparent_ that the situation is not nearly so

sanguine as might have been expeched from earlier confident predictions, nor of course

so bleak as some investigators have painted after devoting great effort only to pro-

duce failure. After all, there are now some results in hand. The picture is actually

like this. The results, that is an expression for a control surface can be found.

With this expression come a set of inequalities (n-i for an n cordinate system).

These expressions_ in the special case solved, besides going up linearly in number with

*This is a report of work carried out on E._SA Contract NAS8-5002
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the order, apparently become much more cumbersome in form. _t, on the other hand, and

this is of crucial importance, the procedures for obtaining the switching surfaces are

very methodical despite the abstractness of the arguments.

What this means then, is, that if it is wished to be able to study cases of con-

siderable complexity 3 it will be necessary to produce the expressions by a mechanical

procedure. This is possible. The form of the algebraic manipulations that _ast be done

is clear. P. Merryman has recently begun, in conjunction with this project, to reduce

the algebra to machine manipulation, with a project to evaluate an arbitrary determinant

whose coefficients are algebraic expressions as an algebraic expression.* A program to do

this has been written and is now being readied for machine testing. This initial program

was for testing the feasibility of principles that would be pertinent to such an under-

taking. It is now presumed that these principles work.

Next comes the question of the applicability of the control surfaces expressions once

they have been found. That guidance and insight will follow is obvious° In the context

of the synthesis problem however, there are two possibilities that mnst be entertained°

One is that the expressions generated are far too cumbersome to, with any foreseeable

extrapolation of the state-of-the-art in hardware, manifest as a missile computer. In

this case, these best switching surfaces would be used as a starting point for generating

approximate surfaces amenable to rapid computation.

Second in this line of thought is the possibility that these are the only

solutions achievable. That it will require a sophisticated perturbation theory to

obtain the solutions of plants evincing even slightly more complex forms. In that

I
I

I

I

_x-

Po Merryman has also found and programmed a procedure for finding eigenvalues and

vectors of arbitrary non-singular matrices, which will be of importance in the investiga-

tion of the arbitrary linear plant. This work is reported below where the eventual

application is to finding approximate optimal trajectories of general plants.
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case these solutions have a central role to play, as the harmonic oscilla_or or

the hydrogen atom in quantum mechanics. Far from being a hopeless situation, it is

one in which i_vestigators can apply a whole range of procedures to obtain the more

crucial insight that they need.

From this perspective a glimmering of the programs that will be important to

bring this effort to fruition are becoming clear. First to find "first integrals"

from which the surfaces are built up is easy in the case attempted. In general it

may be most difficult to practice the given procedure. Other procedures may have to

be investigated. P. Mendelson already has some results in this direction. B. Bass

also reports results of a more general nature.

Second there is the whole program of moving toward more difficult plants. As

the regularities to be found have yet to be reported, it can only be commented that

the construction of the surfaces should be tried in a search for these regularities.

Auxilliary techniques _nst be found. Here, one auxilliary technique is being persued

by P. Merryman. Applied to the simplification of the plant it is a procedure for

finding a transformation to a simpler form. Applied to investigation for insight

into the problem it is a procedure for finding approximate trajectories.

Third it will be necessary to learn how to generate mechanically the expressions

for the switching surfaces as the cases are understood. To date, P. Merryman has

initiated a program in this direction. P. Mendelson has hopes of working closely with

him.

Fourth, a program to learn how to perturb the known solutions may have to be

initiated.

Fifth_ it is certain now that much will have to be learned about how to approximate

the known solutions where fast computations with light equipment is imperative.

Below is presented the fundamental approach used by D.C. Lewis and P. Mendelson.
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3.i Statement of the General Problem.

We have given a system of differential equations of the form

I

I
I

I

I
I
I

I
I

I

I
I

I
I
I

(i) _ = f(x) + a_,

where the dot stands for differentiation with respect to the time t, where the

unknown x is an n-vector_ where f is an n-vector _nction of x, and where a

is a constant non-zero n-vector, f(x) is assumed to be of class C', at least. As

for the scalar e , this is a bounded not necessarily continuous function which is to

be chosen in such a way that a solution starting with given initial conditions will

be steered as quickly as possible to the origin x = O. Evidently c can be regarded

as a function of x.

Also without essential loss of generality we can take the bound for l_I to be 1.

Otherwise we would modify the vector a by dividing all of its components by the bound.

From the "bang-bang" principle it is known that time optimality may be achieved

in a wide variety of cases by limiting e to _ts two ex_.reme values +l and -1.

Thus_ we can regard (i) as representing two systems of continuous differential equa-

tions, namely_

(la) i = F(x)., where F(x) = f(x) + a,

corresponding to e = +.i_ and

(ib) i = G(x), where G(x) = f(x) - a.,

corresponding to e = -i. We now formulate the problem by asking how it is possible

to steer a point x into the origin as q_ickly as possible by making it move first

along a solution of the system (la) (or (lb)) and then along a solution of (lb) (or
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(la)), and then, again, along a solution of (la) (or (Eb)), and so forth, until the

origin is reached in a minimum tim_. The problem is to determine at what point, x,

t - •

we should switch from system (la) to klbJ_ or _ice versa. These points are known as

switching points; and point sets consisting of switching points (corresponding to all

time optimal paths) are known as switching manifoids, even though these point sets

I

I

I

!

I

I

need not be closed manifolds in the strict technical sense, whereby each point of

the set has a neighborhood whose intersection with the set is homeomorphic to a simplex

of some dimensionality _ i and _ n. In fact most of the switching manifolds, or at

least the parts of them referred to later as "leaves", will turn out to have certain

boundary points w_ich will constitute switching manifolds of lower dimensionality.

Broadly speaking, our problem is to determine equations for these switching manifolds

and to develop certain inequalities which can also be satisfied by points lying on the

switching manifolds. Theae inequalities are necessary because the switching manifolds

are found not to be completely determined by the equations. This is connected with the

fact just mentioned that the switching manifolds are not closed.

I

I

I

3.2

f(x) = Ax,

Comments on Linear Plants.

Consider the so-called case of a controllable linear plant, whereby

A being an r_n constant matrix_ and where the n_n matrix D, whose

columns are the vectors, a, Aa, Aa 2, ..., An-ia, is non-singular. This definition of

the controllability of a linear plant was introduced by Kalman and is designed to

I

I

I

I

I

insure that every point in some neighborhood of the origin can be steered into the ori-

gin in the indicated manner. From this fact it is obvious that controllability is

invariant under non-singular linear transformations of the vector x. Indeed it is

easy to verify that if x is replaced by Lx_ L being an n_n non-singular constant

matrix, A must be replaced by LAL -I, a by La and D by LD. And, of course;

LD is non-singular, if both L and D are.

These facts make it possible to perform a preliminary normalization, so that the
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components of a may be assigned any special values not all zero. For instance, there

is no loss n9 g_]ity in assuming that the ith

We next turn to a more far reaching reduction of the form of a controllable

linear plant. We introduce a new unknown vector y = D-ix, whose n-components it will

be convenient to denote by Yo' Yl' "''' Yn-i (rather than by YI' Y2' "''' Yn )" Then

evidently x =Dy and, from the original equations of the linear plant, which we

recall are

(2) i =Ax + ae,

we find that

= D-I_ = D-I(Ax + ae) = D-lADy + D-lae.

Suppose that the characteristic polynomial of A is kn -

n-i k

x = Dy = Z A ayk by definition of D. Hence ADy =
k=0

n-IAk+l = A n n_2. k+l
Hence ADy = Z ayk aYn_ I + L A ayk.

k=0 k=0

By the Cayley-Hamilton theorem A n =

(n-__ _,

n-1

Z pk Ak.
k=0

n-1

Z pk k_. Note also that
k=0

n_l.k+l n nz2Ak+l
_ ay k = A aYn_ 1 + ayk.

k=0 k=0

Hence

(i°ITherefore I_ = ADy + ae = D Pl Yn-i + D

I%-

O

1

n-:

+ aE.

Multiplying by D -1, we thus get the following equations for the linear plant when
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expressed in terms of Yo' "'" Yn-l"

3o = poYn_l + 0 +ble

_)
Yl = PlYn-1 + Yo +b2_

Yk = PkYn-i + Yk-i + bk+le' k = 1,2,...jn-1.

Here we use bl_ b2, ..., b to represent the components of the n-vector b = D-la•n

This means t?_t Db = a_

(4)

so tb_t

ZA(2)a
al .ZAliai . li i

1 1

ZA(2)a
a2 .ZA2ia_ . 2i i

l 1

a m .a. ZA'2"a_
n nl 1 nl 1

i i

I bl

b 2

i bn

a I

a 2

a
n

^(k)
where we have used _..

ij

th
to represent the element in the i row and jth column of

A k. From Cramer's rule_ it is clear that (4) implies that b I = i, while

b 2 = b 3 = ... = bn = 0. Hence, from (3), we see that any controllable linear plant

can be written in the prepared form

(_) I Yo = PoYn-i ÷ E

Yk = PkYn-i + Yk-l: k=l,2_... _n-l.
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Notice that it is easy to eliminate

result being

Yo _ YI' "''' Yn-2 from these equations, the

(6) _ (n) n-1 yn(kl)
_n-i - )oPk = c.

After (6) has once been integrated the function Yn-2' Yn-3' "''' Yo can be found

successively without further integration from the last n-i equations in the

system (5).

This is a major conclusion: A controllable linear plant consisting of a system

th
of n first order differential equations can always be expressed as a single n

order differential equation of the form (6). The converse position is also true.

For, if (6) is given a priori_ we can form the system (5), which is certainly con-

trollable, since the matrix D pertaining to (5) may be seen by a short calculation

to be merely the unit n_n matrix. Of cours% this means that not every system (2)

is controllable. For an example we need only to choose A so that it has a pair of

equal roots with sim_le elementary divisors.

3.3 Review of the Theor_ofFirst Integrals.

Our general method for obtaining the switching manifolds of a system such

as (2) or even (i), where f need not be linear_ depends upon a familiarity with the

theory of first integrals. We propose here to review the simple facts needed in the

following sections_ where we shall explain and illustrate our method.

A first integral of the system (la), say, is a scalar differentiable ftuucti0n,

_(x_t), of the n-vector x and the scalar t_ such that

(7) _x(X) +_o.

This means that _[x(t),t] : constnat, whenever x(t) is a solution of (la). It is
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easy to see that (7) is necessary as well as sufficient for the constancy of any

_[x(t),t], for the __n_itial point Y(n) .._y _ +_ .... _+_

If _ - O, the first integral is said to be time-independent. Otherwise, it

is called a time-dependent first integral.

Finally we will consider k-vector first integrals, both time dependent and

time independent The definition is the same as in the scalar case but in (7), q_

is now interpreted as a k-vector function instead of a scalar function. Each compo-

nent of a vector first intefral is_ of cours% a scalar first integral.

It is easy to obtain n-vector first integrals of the system (la) by appeal to

the existence theorem for such a system.

We hereby assume that F is of class C' and then we know that an n-vector

differentiable function Y(Xo,t ) can be found, which, for constant n-vector Xo,

is (considered as a function of t) a solution of (la) and reduces to x when
o

t=O. Moreover if we write x = _(Xo,t), we can immediately solve for x° in terms

of x and t. This is because x and x° represent points on the same trajectory;

either may be regarded as the initial point; x appears on the trajectory at time +t

after Xo, while x° appears on the trajectory at time -i after x. Hence

x° = Y(x,-t). In other words, if x(t) is any solution of the automonous system (la),

we have identically Y[x(t),-t] "= x(0), which is constant. Thus Y(x,-t) is a

time dependent n-vector first integral.

It should also be stated that the corresponding n-scalar first integrals furnished

by the components of Y(x,-t) are independent in the sense that the jacobian determi-

nant of the _'s with respect to the x's is never zero. It is satisfactory for our

purposes to know that this is true for all small t, as it is obvious from continuity

because of the fact that the Jacobian is clearly unity when t=0, this last fact being

obvious from the identities q_(x,O) = x. To prove the statement for large t, we

could mention that the Jacobian is a Wronskian of a certain set of solutions of the
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system of linear differential equations adjoint to the variational equations based on

the solution x = Y(Xo_t). We shall omit details on this.

What about time-independent first integrals. To discuss these, we limit all

attention to a region where one of the components of the vector F does not vanish.

This is apparently the case in applications to control theory. In order to single

out the particular component of F which does not vanish, we change our notation.

In the rest of this section, x will denote an (n-1)-vector, y will denote a

scalsr_ and the system (la) will appear in the form,

_x f(_,y) _ g(_,y), g(x,y) _ o,(8) _, = , dt =

where, now, f is an (n-l)-vector continuously differentiable function of x and y.

In other words the pair (x,y) replaces the previous x and the pair (f,g) replaces

the previous F. Let us write the initial value solution of (8) in the form,

(9) x = _(Xo,Yo,t), y = Y(Xo,Yo,t),

where q_ is an (n-l)-vector function and _ is a scalar function, and where, of course

qD(Xo'Yo'O) =- Xo' Y(Xo'Yo'O) ---Yo" Then, from the previous discussion, we know that

q_(x,y,-t) constitutes an (n-l)-vector first integral and _(x,y,-t) is a scalar

first integral, both of them being, in general, time-dependent.

One of the equations which expresses the fact that (9) constitutes a solution

of (8)is

Y(Xo,Yo,t) = g[q0(Xo,Yo,t), Y(Xo,Yo,t)].

Since g is, by hypothesis, never zero in the region considered, it is clear that

the derivative of Y with respect to t is never zero. Hence, if k is any con-

venient constnat (to be regarded as definitely fixed from now on), we may solve the

equat ion
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(i0) Y(x,y,-t) = k

for t as a function of x and y, say,

(ii) t = T(x,y), where _(x,y,-T(x,y)) _= k.

We next define the (n-l)-vector function ¢(x,y) as follows

(i2) ¢(x,y):_(x,y,-T(x,y)).

The claim is now made that ¢

(8) and that

Proof: Since

have

is an (n-l)-vector time independent first integral of

T(x,y)-t is a scalar time dependent first integral.

q_(x,y,-t) and _(x,y,-t) are (time dependent) first integrals, we

(13)
q_x(X,y,-t)f(x,y) + qDy(X,y,-t)g(x,y) - q_-t(x,y,-t) _ 0,

(14)
Yx f + Yy_g - Y-t _ 0,

as identities in x, y and t.

Since Y(x,y,-T(x,y)) _ k, we also have

(i5)
_T

Yx-" Y-t _ T 0, and Y -Y_t _---0.

Therefore

(16)
(_x - _-t _)f + (_y -_-t _)g --- O.
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These are identities in x and y. Subtracting (I_)with t

from (16), we have Y_t(t,x,-T(x_y))[l _ _ _ _ -= O. Since

we have

set equal to T(x,y)

Yt never vanishes_

(17) 3_f 8'r

and this expresses the fact that _(x,y) - i is a time dependent first integral of

(8). By definition of ¢ _ we have

_f + _ bT 3_]
_g = [qDx - q_-t _]f + [q_y - q_-t _ g"

From (17) this reduces to _x f + _yg - @-t' which, in turn, from (13) reduces to O.

This completes the proof of the claim.

The (n-l) components of ¢ together with T are seen to have a non-vanishing

jacobian with respect to the components of x and y. In fact, from (15) and (12)

we see that

I 3_ b_

: i _x - q_-t _ q_y - q_-t

Y-t

_x Yy

Since _ = y -t and _ = Y -t we may add to the first (n-l) rows of this

determinant the last row mnltiplied by the (n-l)-vector __t/W_t. This shows that

the jacobean in question differs from the jacobian of the n time dependent first

integrals, _, Y_ only by the non-vanishing factor _-t"

Thus we have proved that the transformation

(18)
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is non-singular at least in a neighborhood of any point where g _ 0. With the help

of this +_orm_ation, the eq_ations (8) are reduced go the very si_p!e form

(19) _=0, _=+i.
dt dt

The possibility of carrying out the reduction (la) to the form (19) in a neighborhood

of a point where not all components of F vanish together with a similar (but not

simultaneous) reduction of (ib) is the basis of our theory of a "closed form" method

of optimal control, as we shall explain in the next section. The "closed form" will

involve only functions which appear in the initial value solutions of (la) and (ib)

3.4 General Method for Obtaining Switchin_Manifolds.

We now are in a position to return to the problem previously posed with

regard to the linear or nonlinear plant represented by (i) or by (la) and (ib). In

considering these systems of differential equations we consider three sets of vari-

ables as follows:

The first set of variables are the components of the original n-vector x, in

which we have the system (la) in the form_

(20) _=F(x)

and the system (ib) in the form,

(21)

The second set of variables

a one-to-one transformation of class C' from x

(la) appears in the simple form

are the components of an n-vector y, obtained by

in such a manner that the system

(22) Yi = 5ii' i+l,2,...,n,

while the system (ib) appears in a possibly much more complicated form such as
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(23) _ = K(y).

The third set of variables, components of an n-vector z_ on the other hand,

leave the system (la) in a possibly very complicated form such as

(24) _ : L(z)

but have the virtue of reducing the system (ib) to the simple form,

(25) zi = 5in' i=1,2,...,n.

It is assumed that we have equations of transformation leaving the origin in-

variant, and valid in a neighborhood of the origin, which enable us to pass freely

from any one of these three systems of variables to either of the other two. The

possibility of obtaining such transformations with the desired properties is clearly

indicated in the previous section, at least if F(O) / 0 and G(0) J 0, as we

hereby assume.

As a point is successfully steered into the origin, it must, after its last

switching, be on the half-trajectory of (la), or of (ib), which terminates at the

origin as t monotonically increases and approaches a certain terminal value T.

Of course, if the point was ori@n_ a fly on either one of these half-trajectories, it

can be trivially steered into the origin with no switches whatsoever. Any other point

must first be steered to one or the other of these two half-trajectories before it can

reach the origin and must therefore experience a switching at some point of these

half-trajectories. Moreover, this switching may occur at any point of the half-

trajectories depending upon the initial position. Hence these half-trajectories

constitutes a one-dimensional switching manifold RI. It has two "leaves", RI,I,
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the half-trajectory system (la), and RI,2, the half-trajectory of system (ib).

R! = Rl 7 L]R7 o"

For the sake of brevity, we w_ll describe in detail only RI, I and the leaves

of switching manifolds of higher dimensionality on whose boundary RI, I lies.

Similar considerations may be supplied by the reader for RI_2"

From (22) it is obvious t_t RI,II when expressed in terms of the y's consists

of those points for which y _ 0 and Yi = 0, for i=2,3,...,n. When we make a

transformation to the z's, these conditions take some such form as h_(z) < 0,

h*(z) = 0, for i=2,3,..._n. We next write these conditions in a more suitable form,

by eliminating zI from all but one of these n conditions; the one remaining

condition is the one which expresses zI as a function of z2, ..., Zn, hereafter

briefly denoted by the (n-1)-vector _. Assuming that this elimination can be

effected, we obtain (in terms of the z's) conditions of the form,

hm(Z)< O, zI = h2(_), hi(_)= 0, i=3,4,...,n,

as both necessary and sufficient that the point z c RI_ I.

Now any point (not initially on RI,I) being steered successfully into the

origin via RI, I must have been proceeding along a trajectory of (ib) just before

its last switching. Hence the locus of all half-trajectories of (ib) which terminate

on RI_ I must constitute a"leaf" R2, I of a two-dimensional switching manifold.

The detailed substantiation of this statement about R2_ I is similar to what was

stated above-An s_bstantiation of the fact that RI, I was part of a one-dimensional

switching manifold. From (25) and (26) it is clear that a point on R2, I is character-

ized by the conditions

hl(_)< 0, zI < h2(_), hi(_)= O, i=3,4,...,n.

When we make a transformation to the y's, these conditions take some such form as
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_l(y) < O, q_2(y) < 0, _i(y) = O, i=3,4,...,n. Wenext eliminate Yl from all

but one of these n conditions; the one remaining condition is the one which e._press_.

Yl as a function of Y2'''''Yn' hereafter denoted by the (n-l)-vector y. Assuming

that this elimination can be effected, we obtain (in terms of the y's) conditions

of the form,

(27) _l(y)< 0, _2(_)< 0, Yl = _3(y), _l(_)--0, i--4,...,n,

as noth necessary and sufficient that the point y e R2_ I.

Now any point being steered successfully into the origin via R2, I and RI, I

(assuming that it did not start on R2,1) , must have been proceeding along a trajector2

of (la) just before switching onto R2, I. Hence the locus of all half-trsjectories

of (la) which terminate on R2_ I must constitute a "leaf" R3,1 of a three-

dimensional switching manifold. From (22) and (27), it is clear that a point on

R3,1 is characterized by the conditions

_i(_)< o, _2(y)< 0, Yl < _3(y), _i(y): o, i:_,...,n.

This process may be continued by induction, yielding, for any positive integer

k < n, a "leaf" P]<_I of a k-dimensional switching manifold. This leaf is character-

ized by n conditions, k o_ which are inequalities and (n-k) of which are

equalities. These latter may be expressed by equating to 0 certain time-independent

first integrals of (la), if k is odd_ and of (ib), if k is even.

A main purpose of this paper is to carry this procedure out in detail for the case

of the linear plant of order 4 in the special case in which all eigenvalues of the

matrix A vanish. In other words, the system considered can be presented in the

form (5) or (6) in the special case Po = Pl = P2 = P3 = 0 (n+4). This example

should give a good idea of the general behavior of such systems even whem the p's

are not all zero, and our results obtained from a study of this simple example should
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approximate the results to be obtained _nen the p's are small. The reason for this

is roughly as follows:

Our methods are based on certain transformations between the x's, y's, and z's.

These transformations depend continuously upon certain systems of first integrals

of (la) and (ib), which are written down in terms of the initial value solutions of

the differential systems (la) and (lb). Now_ if these systems depend continuously

on certain parameters_ such as the p's_ it is well known that the initial value

solutions likewise depend continuously on the same parameters. Hence our results

will be but slightly effected by small deviations of the p's from O.
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4.0 THE ADJ01NT SYSTEM AND THE MAXI_JM PRINCIPLE.

Among the major steps in the theory of synthesis of optimal control systems was

that taken first by R.W. Bass (10c. cit. page 191; 1956) with the introduction of

"C " "a system of differential equations for certain onjugate or "adjoint" variables

intimately associated with the variables of the system; see also the subsequent

develop_emt of the work by Desoer. A secondj not unrelated step was indicated in

1958 by Pontragin in the proclamation of the "Maximum Principle" wherein the problem

receives a Hamiltonian formulation. For the convenience of the reader_ a summary

of this theory will now be presented,

System State. A set ofnumbers characterizing the dynamical system to be con-

trolled is called the system state or position in state-space. It is assumed that

these numbers can be sensed instantly and precisely; in reality, stochastic con-

sideration, filtering and prediction theory enter at this point, but the overideali-

zation involved in this assumption is sufficient for preliminary designs. The system

state is represented by a vector x (or a "point" in n-dimensional Euclidean Sl_ee

En), and the system's evolution with time is specified by the curve x(t) in the

state space En).

System D_cs. The evo!ation of x(t) is assumed to be determined by the

differential system

(i) k = f(x,c), x(O) = Xo, (" = d/dt)

where x is the initial state, and c is the control vector.
O

Feedback Control Function. If the vector c depends only on the state x, i.e.

(2) c = c(x)

4-1
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then we have instantaneous state feedback control.

State Acquisition Problem. A _ypical desideratum is that the system (i) evolves

_ + _ _ _r ' > 0 the state attains the positionso _, Do some future time _. = _Xo} ,

(3) _(T): o.

If this be true for every x in a region R containing x = O, we say that the
o

system (i) is controllable, that R is the stability domain, and that T is the

transition time.

Control Constraint. A realistic assumption is that no control law is admissible

unless, for each x in R_

(_) c(x) is conzained in

where U is a closed, bounded, convex subset of En. The control is saturated

if c(x) lies in the boundary of U for the state x.

Performance Criterion. We may assume that_ for every Xo, the future path x(t),

0 _ t j T(x o) can be accurately predicted if c(x) be precisely specified. Hence

for each piecewise smooth function c(x) satisfying the const.r_i-nb .(/_,..we may

(in principle at least) compute any predicted path criterion of the type

(5) _,_ = ¢(_o) -- f '__(_,c(_))at
o

where _ > 0 is any desiredamooth function of the instanteneous system state x(t)

and corresponding control c(x(t)).

Optimal Control, An optinm_control law c(x) provides an absolute,minimum

to _ (_ 0) for every x° in R, relative to all other admissable control functions.

4-2
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If this control be unique, it is called the optimal control function.

Conjugate State. Suppose that _(x) is a smooth Ikmction almost everywhere

(a.e.) in R. Then grad _ exists a.e. in R, and we call the vector

y = -g(x) =:-g_ad _(x) the co-s_ate of the state x.

Hamiltonian. For every state x, co-state y, and control c_ we may define

the corresponding Hamiltonian

(6) H = H(x,y,o)= y.f(x,o)-k_(x,c).

Maximam Principle° We define the function

(7) c --_(x,y)

for all y in En, by specifying that

(8) H(x,y,_) = Max H(x,y,u).
u inU

Extremal Control. We call the control function

(9a)

(gb)

c(x): c(x,-g(x))

g(x): grad_(x) (x a.e. in R)

an extremal feedback control_hlnction.

Synthesis of Optimal Control Systems. It can be shown that if c(x) be defined

everywhere in R in such a way that (9a,b) holds, a.e., and such that x(t) is

continuous and its derivative x(t) is continuous from the right (i.e. i(t) = i(t+O))

then the systam (i) with this control law is optimal relative to the given constraints

and performance criterion.
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Thus, in order to design and synthesize and optimal control system, given the

d_cs f(x,c), constraints U, a_id performance index a(x,c), one needs to

derive or compute

(a) the s+_bility domain R;

(b) the switc_in_ f_nction g(x) (for all x in R).

There are hasicad_ly three distinct ways to do this, and correspondingly three

distinct types of control computers°

Firstly, suppose that there exists a T = T(Xo) > 0 and a y(O) = -g(Xo) such

that the TWO-POINT BOIINDARY-VALUE PROBLEM

(lOa) _ : f(x,l(x,y)),• x(O) : xo, _(T) : O,

_lOb] _.: -fx*(X'_(x'_]]v•. • .......+ gr_(x)__,_]_,• , _,, y(o) : -_X_,o.)

(10c) g(%).f(%,_.o_,_=,'__,,= _(%,_(Xo,__(Xo))) o

has a solution. Then

(ll)

for 0 _< t _< T, and

y.f(_,_(_,y)):_(_,[(x,y))

(12) g(Xo) = grad _(Xo).

We may readily solve problems (a) and (b)simultaneously by running (i0)

"backwards in time" from the final state x = 0 with every possible co-state y(T)

compatible with (lOc) and for every transition time T > O. Such a computation pro-

duces every admissable initial co-state y(O) (: -g(Xo)) and every initial state xo

in R in an efficient and non-redundant manner. This is the second method.
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The two-point boundaz_-vaiue problem can be given in a concise and elegant

formulation. In fact, using (6), we may re-write equations (lOa,b) as a Hamiltonian

s__ystem

(l_) _ : gr_(y)H(x,y,c) x(o): x0,_

(l_) t : -gr_(x)R(x,y,c), y(o): Yo,

(13o) c : _(_,y), Yo : -grad_(Xo).

The condition (I) then becomes the requirement that the initial value of the H_mil-

tonian be zero, i.e., that

(14) H(_o,Yo'_(Xo,Yo))= 0,

while the result (!I) states that the H_mi!tonian is constant along any optimal

curve x(t), i.e.,

(15) H(x(t), y(t), c(x(t), y(t))): O, 0 < t < T.

The thirdmethod is more difficult touse but preferable where possible. This

is to find explicitly scalar function T(x) > 0 and _(x) > 0 which satisfy a.e.

in some domain R the partial differential equations

(16a)

(16b)

(16c)

f(_,o).gradT(x) : -i

r(_,o).grad_(_):-g(x,c)

o : _(_,-grad_(x)).

We shall now apply the preceding theory to the problem of satellite attitude

control of an orbiting vehicle.

4-5

i



I

I
I

I
I

I

I
l
I

I
I

i
i

I

I

I
I
I

For the attitude control system under consideration, and for an arbitrary per-

missible perforamnce index, a(u l, u2, u 3, w) the first method of computing the

optimal control function may he _ummarized as follows:

FUNDAMENTAL TEEOREM. Consider the system

i i,1 (i=1,2,3)(17) x = -p@xi, xi(o)= u

(18) J_-p_Jp= -g_E_*_], (p(o)=o),

i i (i=1,2,3)•i i a(xl,x2,x3,p) y (0) : Yo '
(19) Y = -q@Y - grad(ui)

3 i i gra_(w)_(xl(2o) _ : z x ®y - _(p)Aq- ,x2,x3,p) q(o)= %
i=l

where

and

3

i=l

For each t > O, put

(22) u i : xi(t),

(23) w : p(t)

(i=l, 2,3)

and define c by

(24)

The control

c = c(ul,u2,u3,w) - sgn G*q(t).

is permissible and optimal with respect to the criterion

4-6
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Not that as the initial vectors vary over the sphere (21), the states for which

c can be defined (22) - (2_) fill the entire six-dimensional manifold.

Huill: l, (i=l,2.),._ < w.< _ o:1,2,3).
3

Thus by integrating the system for asufficiently dense set of initial conditions_

the optimal control vector c, can be determined on an arbitrarily dense set of

system states.
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&. i A General Two-Point Boundary Value Problem

The optimal control problem leads to an equivalent two-point boundary-

value problem _hich is stated as follows.

We are given n linearly independent vectors _i, (i=l,...,n) and n scalars

_i and _j, with i=l,2,...,p, j=l,2,...,q, and p + q = n. The problem is to

o N
find n-vectors x , x and a value of the independent variable (time) T > 0 such

that the differential vector equation

(1) --_: f(x) (xin _n}
dt

has a solution x = x(t) on 0 < t < T which satisfies

(2) o N
(i) x(O) = x and x(T) =

(ii) _.X O = ai,

(dii) _P+J'xN = 8j

(i=1,2,... ,p)

(j = 1,2,...,2 and p + q = n)

This is the classical two--point boundary value problem which ha__£sin 5eneral no

closed form solution. One practical way of solving the optimal control problem

consists in mechanizing an approximate solution of this problem. This can be

achieved by digital real-time computation.
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4.2 Finite-Differences Approximation.

We want to determine a discrete approximation of x(t), the solution of the

differential equation (1) of the preceding chapter with the conditions (2 i, ii, iii)

of the preceding chapter.

For sc_e large integer N > 0, find a T > 0 and a sequence _xi_ , (j=O,1,...N)

of n-vectozs which satisfies

(i) Li'x° = ai, (i=l,...,p); tP+J'x N = 8j, (j=l,...,q)

1 _-iI;T)and which minimizes the non-negative scalar error function p = p(x°,x ,... ,x ,

defined by

(2) - f(x )U+&J #+l
j=l

Note that if p = 0, then, approximately,

(3) Xj : x(tj), tj = j(T_), (j=O,I,...,N)

t°

x(tj) = x(O) + _ 3f(x(@))d@,
o

(j=O,l, ...,N)

4-9



4.3. _terative Relsae_tion A16orithm.

Let N be fixed. Let {xJ'0_, (j=O,I,...,N) be an arbitrary sequence satisfying

!

I

I

I
I
I

I
I

I

I
I
I

I
I

(1) li'x O'O = Czi,

For (v--O,l,2,...) let

(i=1,...,p)iP+J.xN,° = _j, (j=1,...,q),p+q = n.

{xJ'V+l], (j=O,I,...,N), be sequences satisfying

(2) zi'x°'V+l = si' (i=l, .. .,p); LP+J .xN'v+l = 8j , (j=l, .. .,q), p+q = n,

and defined ,inductively by

(3) xJ, v+l = FJ(xJ-l, v, xJ, v, xJ+l,v; Tv) , (j=l,2,...,N-1),

(4) Tv+I = ¢(x°'v, xI'_, ...,xN'V),

_O, O,V+l _ _ _O(xl,V,Tv) '(9) _ _x ,_j = F°(#,v+1,Tv)= F°(x_-1,V,Tv),

(v=0,1,2,...) where F j, (j=l,2,...,N-1), ¢, FO, _o are defined by

(6) F j = FJ(x,y,z,T)=

T {f(z) f(x) * _]- - f(y) [z-= i/2(x+z)-

.i/21_)2 *- fx(y)f(y),

+

(j=l, 2,... ,N-l),

(7) ¢=¢

N

N¢

(xo, xI xN) _ o
' "'" ' ¢i

,i=3

NZI [I#f(xJ-l)_2 + IIf(xJ+l)II2 ]
j=l

4 - i0
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(8)

(9) F (x,_)--x- f(x)

- ii



4.4. Fundamental Relaxation Theorem.

THEOREM. If the sequences £xJ'V_ ,

i.e. if there exist

(J=O,I,...,N) converge ,

(1) x j : lira xj'v ,

"F--_ +GO

then _x j] , (j=O,l_ ... _N) is a solution of the finite differences approximation

to the two-point bounda_-value _roblem.

PROOF. Note that for j=l,2,...,N-1,

I

I

I

I

I
I

I

I
I

I
I
I

(2) _o.... +Hx_-__x_+(-_)_x_lj_+

+Jlx_+_--_-(,_)_-cx_l_+...

Hence

(3) gre_l(xj) p = 4 Ix j - FJ(X j-l, xJ, xJ+l,T)_ for

(x)

gr_d N p = 2_°(x_,,)- F°(x_-_,_J
(_)

_--_=p_(_/_)[-_+o (_/_)_i]

(_)

(_)

(6)

(J=l, 2,... ,_-i).

Therefore, p has an extremumwhen

*There exist sequences which converge. The conditions for convergence have been

extensively studied by Richardson and other authors.
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(7)

(8)

(9)

x j = FJ(x j-l, x j, xJ+l,T),

F°(x°T): F°(xIT),

xo, I xN)T=_( x, ..., .

4 - 13
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4 _5 Lia_unov Stability of Control Based on the Approximate Closed Form Solution.

"_ " (i=l, 2, 3)(i) u = w@u _,

(2) J_ + w_Jw = - P sgnEg 3 + d

i

where P = diag (71, Y2' Y3) and where e "g = ci
(i=1,2,3)

(3a)

(3b)

(3c)

@l=Wl + [sin@ltan@2_w 2 - _°s@ltan@_w 3

@2 : _°S@l w2 + sin@l] w3

@_ F sin@ I cos@=___-=___._ + [c ^lw_.
J L c°_23 _2

Now use the control law

Jo

+
(4) qi = @i 27i

wi lwil

di s_[w ]
(1 7i i

(i=1,2,3)

Choose the. I_ovFunction

(_) _ =

Clearly

that

3 3

1/2 Ji(_i)2 + Z

i=l i=l

q_ = 0 if and only if @. =_w. = 0,
1 1

•

(i=1,2,3). It can be proved

(6)
3

<- (_/6)_.
i=l

_,i/wil + 0(5 2, wi2)

4 - 14
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whenever

< 7i/3(7) di

Consider the system (i) - (2), with (4). Define as in (5) and differentiate with

respect to time. Clearly

3 3

(8) _ = Z wi(J_i) + Z 7isgn _i 8i
i=l i=l

Now substitute Jwi from (i) and compute 8i from (4) wherein one can substitute

2 wi2@i from (3) and _'l again from (i). Note that @.l = w.1 + (3(@i ' )" Then

by use of (7) and simple inequality arguments, the result (6) can be obtained.
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4.6 A Steepest Descent Algorithm for Application to Determinin6 Optimal Control Trajectories.

This investigation has been directed at making it possible to investigate metho-

dically the nature of optimal trajectories for the whole gamut of cases that arise.

Many of these cases have properties of nonlinearity in the part of the differential

I

I
I

equation describing the plant without the actuators. A numerical procedure promising

reasonably rapid convergence to a discretized solution of the boundary value problem

was sought. The special feature that it could be especially efficient in the in-

vestigation of a region of a solution was required. From this definition it was

proposed to investigate the possibility of a steepest descent procedure. This in-

I

I
I

vestigation is now in progress with the development of computer programs for applying

the principles arrived at to several problems.

On the assumption that it is possible to construct a function on a space of a

dimension that is a multiple of the dimension of the phase space by the number of

points that must be chosen for a reasonably good trajectory, (1) that this function

I

I
I

is real valuedj (2) that the gradient of this function can be analytically determined,

(5) and that this function takes its minimum value 0 uniquely for a best approxima-

tion to the solution, it is possible to construct a deepest descent algorithm. In

the case of the trajectory for both the system and the adjoint system. Much less

computation is needed than would be involved in direct relaxation or by attempting

I

I
I

to solve the system of linear equations that arise in such an approximation to a

boundary value problem.

Somewhat as a surprise to the investigators it turned up that no such algorithm

as the one being investigated had been applied in attempting to solve more classical

problems. Such problems are the case of matrix theory where it is desired to "dia-

I
I
I

gona_!ize" a matrix or the finding of roots of arbitrary polynomials. As the methods

cover these cases as well the the one directly investigated_ the technique is first

being applied to the solving of polynomials. Here the ease of constructing examples

4 - 16



allows a thorough investigation of the technique, which then in turn is to be applied

to the finding of optimal trajectories. Thus_ first the method is investigated then

the method becomes the tool of investigation rather than the object of the investiga-

tion. The following is a discussion of the procedure as applied to the polynomial

case. It is to be noted that the procedure makes none of the usual assumptions of

real coefficients as in the polynomial case_ or of the symmetry or of distinct

eigenvalues as is usual in the case of the matrix. It should also be borne in mind

particularly in the case of the matrix that it is important to have an iterative

procedure for successful machine computation as the build up of error in the so called

direct methods can be prohibitive. (Actually there can be no completely direct method

for finding the eigenvalues of matrices of dimension greater than four).

The essence of _he procedure is to construct a fkmction that is positive definite

at all points other than at the solutions where it takes the value zero. In the case

of a matrix_ the function is real-valued and on the n dimensional space of the vectors.

Substituting a trial value for the starting vector X the gradient is determined.

The remaining problem is to determine the optimal distance along the gradient. The

solution of th_ problem requires finding the solutions of a pair of transcendental

equations.

In the matrix case (or in the case of the polynomial - the companion matrix case).

In the matrix case we have as in (1) where x is a vector A the matrix and k is

a scalar, as the condition of an eigenvector. Examining the matrix row by row we have

the situation

(i) kx i = a..x

where

4 - 17
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(2) A =

a1

a n

X _-

X

Now the condition that the k be the same for each x i is the condition for selecting

the eigenvectors_ and thus define a set of eigenvalues as in

a.•x

(3)
1 X.

1

k. = k. if and only if
z D

(4)
a..x a. -x
z j

X. X.
z j

then gives the condition for solution or equivalently (4), if

I (5) uij : xj(ai'x) - xi(aj'x) = O.

The set of all these conditions is encompassed in the function

I

I

I

(6)
#(x) = .Z uij_ij = Z(xj(ai.x ) - xi(aj.x))(_j(_i-x ) _ Ei(a-j.x) )

zj zj

and it is this function that is to be minimized. Note that the condition makes

no special case of nonlinear roots of the matrix or symmetry of any kind as well as

being independent of whether the coefficients_ eigenyalues, or eigenvectors are complex.

The procedure followed to find the solution is that of steepest descents. Fig. 7

gives a picture of the procedure. On the contour map is the trial solution x1.
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The gradient of _ is determined at that point. Then the distance is determined

rI in such a manner as to minimize the value that _ can have along the line de-

termined by the gradient. This gives the point x 2 which is used as the new starting

value for the determination of the next improvement to the trial vector.

The condition for the optimum distance is embodied in

(8) _r 3 + 2r(b cos _' + B) + _) + f cos(_' + (z) = O,

C9) 2r sin(2_' + B) + f sin "_' + cz) = O.

These equations arise from the variation of _(x + c grad _(x)) where r, @' are the

•_=_v_±_ u± o_i_ complex numuez" z. First the S_DStitutions

(lO) _3 = _, _B_
2

is made. It can then be noted that a translation of _ by n gives back the same

solutions4 (The modulus _ is just - 1). Only two quadrants are pertinent to the

solution. In Fig. (ii) are shown the behavior of (8) and (9) over a 2 quadrant

region. The x's locate the solutions, of which there can be only 7 at most.

The solution 8A is either the real solution of a cubic with a single real root or

its continuation in the case that there are three real roots. On the solution 8B

the arrows mark the points where the solutions disappear off the real plane. A sole

solution as in Fig. (12) can occur if the ratio of f to b is large enough. Finding

these solutions would, of course, be tedious if this information were not known.

As it is_ the algorithm would be difficult if a direct attack were made. If, however,

the ratio of b to f is adequately large, the diagram takes on the following

for Fig. (13). In this case, the solutions can be written down approximately by
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inspection.

The technique _hen is to chose a canonical value of _ and a ratio of b to

+ f where _ and f are kept constant and then using Newton's Method and the

r, _' arrived at by inspection determine exact solutions of (8) and (9). In

N steps b and _ are incremented until they reach the values for which we actually

wish to solve. With each of these steps the locus of the solution is followed by the

procedure diagrammed in Fig. (14). At each point r, _ is extrapolated to give an

approximate value and then Newton's Method is applied to correct this value.

What can go wrong is exemplified in Fig. (l_) where the extrapolation can lead

to a close approximation of the solution on another locus for that step. The ensuing

step would locate a point on the wrong locus. To avoid this possibility a sufficient

nu_mber of past extrapolations ar_ retained so that it is always possible to extrapolate

two steps ahead as in Fig. (16). Whenever it is noted that there is a discrepancy

in the answer the extrapolated value is chosen. This accomplishes the double (1) test

of determining that the extrapolations are valid prior to trouble so that the

decision to have confidence in them can be made; and (2) later to select on the basis

of this confidence the correct point. We will later see that this extrapolated

value can be used in another way.

The procedure starts with a pair of solutions. The choice of such pairs is

determined by the fact that if they disappear as solutions, the disappear simultane-

ously. In general, the two loci will converge together as in Fig. (17).

After converging, they will disappear. The test used here is that when the loci

have reached a distance d less than three times the most recent extrapolation

distance for the extrapolation of both, r, _ then the solutions are decided to be

of no interest. (Of course, locus 8A is an exeption). How these solutions can dis-

appear is sketched in Fig. (18) where it will be noted that eventually 8B and 9B no

longer intersect. Also shown is how 8B will eventually disappear from the real plane

altogether.
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Finally_ it is possible that there will be no solution whatsoever in the case

that _ takes on the value of an integral multiple of . In this case Fig. (19)

goes into Fig. (20) and the solution on the negative branch of 9A no longer appears.

This is essentially the procedure_ the best distance is chosen at each step and

the whole iteration resumes, in an Appendix the algebra of the algorithm which is

actually pretty straightforward and an annotated Fortran Program for the polynomial

version appear.
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5-0 COMPUTROL SYSTENB SYNTBESIZED

5.1 /un Iterative Analo_ computer that Solves the Euler-Lagrange Two-Point

B oundary_Value Problem.

In the preceding section the theory of fuel optimal attitude control was applied

to yield three algorithms which m_y be synthesized into computrol systems. This

section gives the preliminary synthesis of these three control algorithms with clue

consideration also given to systems reliability, control actuator configurations,

system transducers and remote command communication (system input/output).

5.1.1 Three On Line (On Board) Computers for Optimal Attitude Control.

In order to realize fuel optimal _ttitude control it was proven

in the previous section that "bang-coast_bang" (÷l, 0,-1) actuator s'mgnals ere

applied to the reaction jets for coarse control during lerge reorientations, then

followed by linear control (antuaJuly reguletion) whith set point biasing of the

control moment gyros to hold at the origin. It also has been shown that there are

three distinct methods of determining the switching signals that will optimally bring

the vehicle to the origin. These are:

Method 1. Pre_computation by the adjoint-systam method.

Method 2. Real time solution of the two-point boundary-value problem.

Method 3. Approximate closed form solution of the Ham_lton-Jacobi partial

diffenential equations.

This section gives the initial logical design of thrae di@ital computers which

respectively realize the three aforementioned methods of determining the optimal

switching trajectories. These are:

1. The Stored Function Com_uter, which constitutes a table look up of the

switching signals as a function of where the vehicle is in state space,

the function (algorithm) determined by Method 1.

5 -1

|



I

I
I

I
I

i
I

!
I

I
I

I
I

I

I
I
!

!
!

2. The Relaxation Computer_ which gives a powerful yet basically redundantly

simple computer realization of the two-point boundary-value problem (Method 2)

solved faster than real time.

3. The Closed Form C_ter, which is inherently the simplest realization of

optimal control since the computer _ derived from Method 3, the approximate

closed form of the Hamilton-/acobi equations.

Potently all three of these computers could be employed in a final attitude

control system because of the powerful interplay that exists _among them for producing

adaptivity and reliability (nedundency of different kind). However, each computer

(or method) is also potentially complete unto itself. An extremely important result

of this study will be the answer to the trade-off possible in the final control

computer design.

5.1.1.1 The Stored Function Computer. Fig. I shows a'block diagram

of the stored function computer. The steps required to arrive at the final form

of this computer include the computation (throughout phase space) of the value that

the switching function shauld have an adequately dense set of points. From this

information items are determined. The first of theae items is the form of the in-

formation that must be designed into the computer as permanent memory in what would

normally be regarded as an aaldre_a_ble computer store. The other important item

required is information for the design of a decoding net that by directly setting

the actuator values for a large part of phase space will neduce materially the

size of the store.

To make clear what kind of a computer is invol_;ed turn to Fig. I. Coordinate

pulses arriving from the analog to digital converters are fed into the Counters.

Thr_e Counters are shown here. For the attitude control computer six Counters will

be needed to describe the six important atate variables. Scaling of the rate at which

the pulses arrive can be done by adjustment of the analog to digital converters.
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This scaling is the feature that makes the computer input simple. The operation is

of the following form. Pulses are constantly sent to the Counter at a rate proportional

to the reading of the Sensor. As they arrive they are added to the Counter. The

same pulses are entered onto a Delay Line. At the point of exit from the Delay Line

they are subtracted from the Counter. Thus the Counters always contain the number of

pulses in the Delay Line.

Correction of the Counters to avoid accumulation of errors can be carried out

by periodically clearing the Delay Line and the Counter simultaneously. Recalibration

of the whole input system can be accomplished by the sensing of phase space points

corresponding to Counter carry points and perturbing the Sensor adjustments in a

mann_depending upon whether the carry is sensed before or after the cheek point is

sensed.

The output of the Counters, which constitute a point in quantitized phase space,

is fed into a Deconding Net. The Decoding Net will either determine a Memory address

or an Actuator setting. The Memory address is determined in the case that the

elaboration of the Decoding Net is not sufficient to provide the correct Actuator

setting.

As the Actuators can be set into any of 27 states five bits of information are

required. It is estimated that a maximum bound of storage for the correct settings of

a million point in phase space will be required (5 million bits) and this information

will densely fill phase space when full advantage is taken of the symmetries (rotations

and reflections) that exist. Present day reliable large volume (information) stores of

this order are in existence that require less than 1 cubic foot and weigh less than

75 pounds. The useful form of these five bits of information per point in phase space

is in the form of three sets of triple valued states. That is, each of the three

Actuators should be either full on in either of two directions or else fall off.

The simplest version of this machine would be to have the settings for all of

5-4
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the points in phase space stored in the Memory and to have the outputs of the Counters

directly determine the address to be referenced in the Memory. Though the simplicity

of this computer is certainly appealing, the size of the Memory may still be reduced

to make the computer minimal. Large areas of phase space have the same setting and

this information can be directly incorporated into the switching circuitry of the

Decoding Net_ Full examination of the switching function throughout the phase space

will give a clear understanding of the best possible match of switching circuitry and

Memory so as to reduce the volume and weight of the total machine.

5.1.1.2 The Relaxation Com_uter. The two.point boundary.value problem of

the direct and adjoint systems is best solved faster than real time utilizing the

relaxation algorithm given above. Furthermore by using an Aeronca proprietary computer*

organization the computation can take place faster than real time with basically slow-

speed, simple computing units. The reason this is possible is that a multiplicity of

the simple computing units are simultaneously working in parallel under one program

control. Inherent in this parallel organization of simple units is not only the in-

trinsic reliability because of the units themselves (because of slow speed) but also the

increased system reliability through the use of redundancy at a functional level. With

this approach, when a unit is detected to be malfunctioning it is switched out and the

load is handled by the remaining units. This can continue until there are not enough

units left to handle the relaxation computation in the time required. Further, when

this has occurred, the remaining unit can be caused to behave like the closed form

computer discussed in the next section.

Before the parallel organization of the simple units for solving the relaxation

algorithm is discussed, the simple unit will be explained. The unit is of the form of

the simple computer shown in Figure I. Alpha and Beta are two seperate banks of

*See Aeronca Report 12-1 entitled "Parallel Systems Organized Computer" (PSOC).
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memory that can be read or written into simultaneously from the buffers. The buffers

are the inputs to an arithmetic decoder_ whose function is determined by the remaining

inputs from the gate control lines. Two other inputs to the Arithmetic Decoder are

from the internal state memories. The first of these is a carry state and the second is

another "on-off" state. One of the gates is set to give the output of the Decoder to

a hub of either the alpha or the beta Output Buffers. At strobe limit this value is

used to set the Output Buffer. The other Output Buffer is set to write back the

information that was in the corresponding Read Buffer. From the simplest viewpoint

the Unit should be regarded as a simple serial two address computer. The purpose of

the two addresses is to determine the two operands, one being obtained from each of

the two memory banks. The result is then returned to one of the memory banks.

However, there is no program stored in this computer as there is no provision for the

decoding of operations. The choice of the operands and the mem°ry locations is deter-

mined by the values of the Gate Lines and Address Lines coming from external decoders.

A rudimentary progr_g facility does exist in the machine in the form of the

possibility of the machine being able to take one of two states. The setting of this

state in turn modifies the setting of the gates.

This absence of the complete facility of the computer is by design_ the Unit

being one of many Units organized together as in Figure If; where to the right of the

Diagram are dotted line block nnits. It is the configuration of this diagram that is

proposed for the relaxation computer. To the left is a Stored Program Memory that has

the steps of the program that zmst be carried out by the computer in the solution of

the algorithm. The successive steps of the Stored Program are selected by the Stored

Program Counter. Each of the Stored Program instruction is decoded by the Gate Se-

lection Switch, the Information Shift Control_ and the Memory Selection Switch.

First note that the Gate Selection Switch and the Memory Selection Matrix open

the same gates and select the same addresses in every Unit. The Information Shift

5-7
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Control also gives the same information to each of the units. In effect the operation

of _a_h.... of the units is .... ÷_ ÷_ _±_c_..... _ .... same and the sole ..... dete_1ing a different

operation of the different units is that they each have different information stored

in them. Thus it is immaterial how many Processing Units are in the machine, the

operation being indifferent to the length of the string of processors to the right.

One point not brought in Figare I but designated in Figure II is that the

Buffers are connected together as shift registers, that is the Alpha Buffers form a

shift register the length of the Unit chain and the Beta Buffers form a shift register

again the length of the chain of Units. Information is uniformly transferred from

Unit to Unit by means of these shift registers which operate independently. The control

of these shift registers is what is determined by the Information Shift Control.

Note that the sensors are connected to this information channel.

A sequence of "OR" gates at the top of the diagram provide the channel by which

information is collected from the processing units to be transferred to the Master

Evaluation Register. Information in the Master Evaluation Register is consnlted

to determine the decisions that .must be made by the stored program. The consultation

is generally in the form of inquiring as to whether a stored constant is exceeded by

the contents of this register and an affirmative answer is manifested in the form of a

decision to instruct the stored progr_n counter to accept the next stored program

constant as a new setting.

The remaining anomaly_ _y that the information from the Units is "orred"

together_ and thns would seem to be non-unique in its form when being transferred to

the Master Evaluation Register_ is resolved on realizing that the logic of the Unit

contains a state setting. At the time of the transfer of the information the setting

of the states of all of the units save one is such that information will not be trans-

ferred out of them. Thus a uniqme signal of a single Unit is read by the Master

Evaluation Register. Which Unit is on at the time of transfer of information is

5-9



determined by internal computations carried out by the seperate units.

Co_p1_tat,_on of th_ r_]a_tion _]gn_ pr_a_ in +_e _._............................................ _ m_ner. Each

of the Units is identified with a point in the quantization of the trajectory. The

Computation of the corrected value of the coordinate and adjoint coordinate values

is computed s/multa.neousiy in each unit. As the previous values of the nearby

points are needed they are obtained by uniform transfer of information through the

shift registers. At the end of each iteration a computation is done to determine

the value of the differences of the last two iteration and all of the Units save one

carrying the largest value of this r.umber are turned to the "off" state. This sole

Unit that is left "on" transfers its information to the Master Evaluation Register

so that during the course of the next iteration it can be decided whether or not the

computation has bee completed. When the computation has been completed and the informa-

tion needed to determine the setting of the Actuators is transferred to the Master

Evaluation Register where it is used to determine the setting of the Actuators.,

The selection of the number of Units that must be "flown" can always be optimized

on the basis of necessities of the mission. In particular, a given number of real

units can be multiplexed to provide an interger multiple of this number of virtual

units. With a multiple identification of points with units the important feature

of rapid propagation of the boundary-value effects can be retained if an identifica-

tion scheme such as that outlined in Figure III is used.

5.i. i. 3 Closed Form Computer. The closed form computer has the character_

istics of the general digital computer with a restriction of its characteristics to

only those needed for the solution of the problem. In particular_ in that the

computation is based only upon the present value of a set of sensors_ no large store

of information is required. The data that is kept has only the purpose of providing

heuristic checks. Store& logic will suffice for the program since only a single pro-

gram need be considered. The magnitude of the accuracy will be a function of the fact

5 - i0



I
I

I
I
I

I

I
I

I
I

I
I
I

I

!
I

I
!il

_'_

C.1

! -°

L
.J.

_ .'_'J

,_+

+. _.

.--j

.t F_
__...

• +Zo
_,r

Cr

--2

,].

J.+;
°.

-c-.r - _

,+ z

\ !

\+ i

t

+_ _

.J.

+ •

0

.A'.

!'..-

\ _ - • +.

t _
! +..

\

._,:-

._:_.

;_ _"

I.+ •

_.

• / _'..



I

i
I

I
I
I

I

i
I

I
I

I
I

I
I

I
I

!
i

that the control is only an approximation to optimal control and the computer need

be no more accu_'ate _i_n the approximation. The control must be designed to carry

out certain operations with optima& efficiency. In this particular computer the

arcsine and the square root must be efficiently computed. This entails all of the

registers for rapid division process as the arcsine is best obtained by a continued

fraction expansion and the square root by a more general use of the division hardware.

The basis for this computer will be the simple Unit discussed in the previous section

with the addition of the special commands above.
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6.0 EXAMPLES OF COMPUTROL SYSTEMS.

6.1 The Control of a Rotating Servomechanism.

In tha_ effort to derive a switching characteristic applicable to practical

transducers in a medium power servomechanism, the following calculations have been

made.

Consider the following configuration for motor and load_ in which the following

idealizations have been assumed:

a. Motor transfer function is linear and second order.

b. Gear train is free of backlash.

c. Load parameters are constant.

d. External torque variations never exceed the stall torque of the motor.

See Figure i.

If the servo torque-speed curves have the following forms

0

Figure 2

end E 1 > E 2 > E 3 ...

and since

then let
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Figure 1

Pictorial of Motor and Load Configuration
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8W
- Ke; _8 - -KbE - ! n

Hence the developed torque

(i) Tm = K e Ein - Kn _'

The load torque at the motor shaft

(JL) (fL)(2) TL = n--2* Jm O' + _ + fm 8' - _d

Equating (1) and (2) we have the system of differential equations

(3) "-2 +Jm _'+ + fm + 8' = Ke E.zn + Td"
n

Let

JL ) ?d--_+J =J_ q=T dm n
n

n

8' :n8

KE.
e in

n
=F sgn o [the extremal constraint)

Hence (3) becomes

(4) JO" + £'_ : F sgn _ + Td



if the solution of this equation is to follow a given input, 8i(t ) so chosen tha_

F+Td
(_) h(t) -- a + b% Ibl < 7- (runaway velocity)

within any finite interval_ the, it is convenient to define a new variable, e(t)_

the actuating error

(5) e(t) = 8i(t ) - 8(t))

clearly le(t)/ -_0 as 8(t) -_8.(t).
l"

After substitution of (5) and (_a)[ (4) becomes

(6) J_ + f6 = (fb - Td) - F sgn _ .

We then desire that the choice of _ which will bring e(t)

to the origin from any initial position (eo, @o).

Let us solve (6).

Set

e(O)= e
o

5(0):
o

Now

e(t) = A + Be-_ + _[ Td)i (fb - -F sgn o]t

6(t) = - j B6

i
+ _ [(fb - Td) - F sgn e]

then

e =A+B
o

f 1
5° =-jB +_[(_ -T d) -F sgn a]

and its derivative

6-4
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hence

B J J
= _ [(_ - _) - F sgn _] - _ 5°

Finally

+J " -J--[(_ -_d ) -Fsgna]
A = e° f eo f2 ,

+J
(7) e(t) = e° y 5°

J

f2 [(fb - Td)F sgn _] + [ J- -- _ [(_ - Td) - F _gno]

and

i

+ _ [(fb - Td) - F sgnc_]t

1 i ]ft(8) _(t) =y[(fb -m d) -Fsgn_] -y[(fb -T d) -Fsgn__ f5°

If we eliminate the parametez_ t, the resultant equation defines two families

of phase plane trajectories_ where the phase plane is defined to be e(t), @(t) plane.

These two families differ in the assumed algebraic sign _. See the following

sketches wherein it is assumed that b, the input rate, and Td, the disturbing

torque, are held constant throughout the trajectory.

Note that only that part of the trajectory which is heavily shaded in the sketch,

will bring the system to the originwith no torque reversal. This then is the desired

final trajectory. Let us solve equations (7) and (8) for this trajectory by elimi-

mating t, and setting the endpoint equal to the origin, e(t) = @(t) = O. Hence,

(8) becomes

-_t i [(_ - Td) - F sgn_]
(9) _ :

i

[(_ -T d) -F sgn,_]- 5°

and

6-5
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(9a) ii 1t J _ [(fb - Td) - F sgn_] - @o
= _ log i

y [(_ -_d ) -F sgn_l

Clearing (7) and (8) we have

+J
(i0) 0 = eO Y @o i[ (fb-Td) Fsgnq] f@o] }

+J - _

[(_-Td) - Fs_] log [(_-Td) - F s_]

Equation (i0) is a double valued implicit function of (eo' @o' _)"

See illustration on following page.

Note that in the I and III quadrant solutions, it is implied by equation (ga)

that we reach the origin in negative tim% i.e._ an unrealizable solution.

In other words_ we require that equation (i0) holds in reality only if

(ii) sgno = sgn e

Hence

(12) 0 = e
O +J -J _l f@o@o f2 [(Td-fb) + Fsgn @o] log + [(Td-fb) + Fsgn @o] J

becomes the optimal trajectory_ and indeed it will be shown_ is the switching curve.

If in the derivation of (12) we let the endpoint be given

e(t) = el

_(t)= o

then

+ J - J---[(Td-fO) + Fsgn @ ] log +
(12a) el = eo f @o f2 o [(Td-fb) + fsgn @o},_

6-7
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Figure 4.

Second Order Switching Boundary
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which implies that the system comes to rest with an overshoot of eI . Note that '

the sign of eI is also the sign of the applied torque which will canse the system

to evolve to a point of interception with the ideal trajectory (12).

Hence_ if we set eI = a and the applied torque equal to, F sgn _ then we

generate the complete closed loop ideal switching characteristic for arbitrary initial

conditions.

+J __ fl(13) _ = eo f @o f2 [(Td-f°) + Fsgn @o] tog + [ (Td-f'b) ÷ Fsgn @o]

For step response only_ with no torque adaptation we have

f@

+ J . ;_F(_ _o) log (1 + -_ )(14) o = e° yeo --7 •
f-

See illustration on following page.

Equations (13)and (14) are co_pletely rigorous _ith respect to the assumptions

listed at the beginning of this section: however_ we note the sensors of a rotating

servomechanism are really measuring the varie201es of a congruence clessi'namely

%= 9 + 2_n (n = any integer)

is a solution of the equations.

Representing 0 m 0 mod 2_ is e_iva!ent to mapping the phase place on a

cylinder. See Figures % 6, 7 and 8.

The construction of a computer _ualog of th_s switching criterion is non-trivial.

Several structures present themselves: however. Ferhaps the most generally useful

method is the analog synthesis.

This difficulty with the raulLipli-co_mec_ed phasesurface is avoided inpart

by the selection of components.
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For example we note that the motor and load are in a closed system in which

it is assumed

ITd - F.

2F
Clearly then I@I _ _-- is the worst case condition. If the e axis is

expanded through choice of gear ratio then the semi-infite strip of Figure 9 can be

represented in a finite box with as few as two discontinuities in traversing the

range of e or @. See Figure i0.

Another source of difficnity arises from the fact that no synthesis will be

perfectly realized. Analogous to this are the well known oversimplifications of

the signum operators,the inherent nonlinearities of the plant, and the inaccuracies

of the sensors.

These realities lead one to believe that the system will h_ve several torque

transitions in its evolution to the origin. Usually this multiple switching is a

limit cycle or a chattering regime or both.

We have_ in our analog synthesis program, observed these phenomen_ in an attampt

to put practical limitations on the acceptable tolerances of the servo components.

Because our multiplier cabinets have been inoperative since the outset of this

program, we have not as yet closed the loop on the analog synthesis of equation (13).

We have, however, approximated equation (14) with straight line segments.
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List of Symbols used in _.i

T _ = torque

Td

Td

T
m

T L

JL

J
m

J

= disturbance torque at motor shaft

= disturbance torque at load

= deweloped torque

= load torque

= inertia of load

= inertia of armature

= equivalent inertia at load

fL = load friction

f = motor friction
m

f = equivalent friction at load

n = gaarratio

K
e

K
n

8 !

= motor torque constant

= motor damping constant

= shaft displacement

e = load displacement

E°

in
= terminal voltage

a = switching function (or control zhmction)

...KE.
e in

F
n

ei(t)= input connns_d

e(t) : error

c = base of natural logarithms

a = initial displacement of input conm_udsgn_ = signum operator = 0 if (_ = 0); = +l if (c O)

b = rate of change of ei(t)
t = time

eo = initial error

@ = initial error rate
O

A, B = undetermined coefficients of differential equations
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v. _m_ory of Jpb±mai .&l.T_tUd_ Cc_}.rrc,l er_@ o_abilmzatmon of an Orbiting

Vehicle,

For most pury.oses a sat,eiii+e or sp_ce vehicle cannot be considered as a

simple point particle.. It muss "_. .,_t.least) t)e considered as a rigid body_ possessing

three mutually perpendicular di_eciions celled "principle axes of inertia". The

axes are unit vecotrs fixed in the body; t_-elr directions are determined by the

body's geometry and mass distributiou. I_L_ i_rJ_u'_iI.,leaxes are taken as originating

at the body's center of n_ss an_J a,_ co_-L_titu_iu@ a right-handed coordinate system.

Specifically; the principal e<_ _ _,._i_,_i ',_-_'_*.

2t __

[wi_ere u = u-u a_qd

or orthosonal,

denoi;es v.be s.:alar product) which are mutually perpendicular

J_u j if _ (i,j=1,2,3).(2) u = 0 _ _ j,

We say that these axes constitute a body -f Jxe_ irene l.[_

(3) . J %U =: ii-_ !i #.

The frame U specifies !she orientation of the bcdy_ rela.t.ive to the inertial space E 3

which we now proceed to define,
i

W6 ass_e: nf,a+. _(tf_ vector 11 is specified by its

components in an inersial frame I_o Ar_ in,e:r+iai fz_ne is an orthogonal coordinate

system fixed relative to the so-ce_is, d '_fixsd st,ars _; the (non-relativistic) equations

of motion o£ Newton and Euler are by definition re,lid in such a frame.

i 2 e _unit vectors e _ e _ be {iven by

Let the
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i
= 0 _ e-= 1 _ e" = 0

0 0 1

Then the frame

is specified by a s_uare array of rmnnbers, or a mtrix_ which in this case con-

i

stitutes the identity matrix° We specify each _Tector u relative to 13_ i.e.

i i i i 2 i. 3
(6) u =_le +_2_ +u_,_ _ (i:1,2,3)

i (j=1,2;3)where u. = e d'u z
J

as a matrix equation_ in which

are 1:.hecomponent, s, of u i. Now we can regard (3)

I _ u_u _ u-; are the column vectors of the matrix Uj

and in which the results (i) and (2) are given more concisely by the statements

-r

(Ta) U:+ : U -1. D-:÷U : U_2'_. : _3;

th
where * denotes matrix transposision (i.e, systematic replacement of the j

column by the jth row). The (equivalent) two relations of (7a) express the fact that

the matrix U is ortho6onalo Every oz:,hogonal matrix preserves Euclidean length;

that is. for any vector x in E 3

_deedI1_ _ : _':_ = _.:_x : _ I _ ; _[ _ X : ""llxll2; it can evenX o .L _
be shown that if

(Tb) holds for every x_ then (7a) holds° in fact_ it should be clear by now that
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any orthogonal matrix defines the prJsoipal %_is franc of some orientation in E 3.

or_,=_ .s,._om m_t.ri_es as defining the orientation, orHence we speak of or'chogor@.l ...... ,_

Z

attitude, of a rigid body in iner_L_l _pace E _ (which is given by the frame I}).

The matrix U is specified by nine components u_. However, by (7) there are
J

si___xxindependent relations between %:hese components, namely _u_l = II_I= IIPR= i,
i 2 _

u "u = u2"u" = U_oU I = O. This mea_s _hat. we should be able to specify U fully

by at most 9 - 6 = 3 independent _rame_ers. in fac_ it can be proved that for

every orthogonal matrix U there .......- _ i- _..o_ ....._._ _ _, v._c_or u in E _

,8) u : (_z' _' e3)*'

i i(u), (i:i,2,]), are given bysuch that the columns of U; u ::u

i
(91) u

I cos_ 2 cosi_5

cos81 sin95 + sine I

sin81 sine 3 - sos01

sin@2 c°s831

sin82 cos83

2
-cos92 sin@ 3

cose I cos_ 5

sin81 cos@ 5

- sin91 sin82 sin8 3

f
+ cos@ I sin_ 2 sin8 5

(%) u_ =
i sin@2 1

-sin81 cos_ 2

cos81 cos92

The geometrical interpretation of the (modified) Euler _ 81_ 82, 83 is immediate:

z"
c- 20



(lO)

where

(iii) uI :
I i 0 0 1

0 cos81 -sin81

0 sin81 cos@ I

(112) U 2 =

I cos82 0 sin82 1

0 i 0

-sine 2 0 cose 2

I cos_ 3 -sin@ 3 0 1

(113) g 5 = sin03 cos03 0

0 0 i

Thus, in order to move the frame T into coincidence with the frame U_ we proceed-3

as follows. Firstly, rotate I3 about; the e 3 axis through an angle 83_ obtaining

the frame U3(83). Now rotate the frame

an angle 02, obtaining the frame U%3o

i
its first or u axis thrcugh and angle

Note that as I_U -.0 the matrix U = U(u) -.13 .

2
U 3 about its second or u axis through

Finally, rotate the frame (U% 3) about

81_ obtaining the frame U = U_% 3.

In fact, by (3) and (9),

(12) U(U) : I_ + 0(11 112),

where the notation O(P) means "_ _p 2 for all 0 _ 5, for some fixed numbers

> O, 5 > 0".

i
In aircraft work it is customary to take u from the center of the plane to

2
its nose_ u out the rig_it wing and u _ vertically downward. One then refers to
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2 2 e32)1/2the independant rotations UI(81 ), U2(92 ), U3(_3) for s_lZ lull= (ez + e2 + J

as roll_ pitch and yaw maneuvers.

Now let u = u(t) (hence U = U(t)) be specified as a function of time t,

0 <t <+_. Let

respect to time.

U = U(t) by

• = d/dt denote the operation of taking rate of change with

Now we can define the ______ularvelocity vector w of the frame

•i 2 .2 u3(13) w = (1/2)(u I x u + u x u + x _3),

,g-,,,

(i_) uOv =
u2v _ u3v2 /
u3v I UlV 3

UlV 2 u2v I

(Note that in general v@v O, while in (3), u 3 ul_u 2 2 u3_u 1= = _ L1 = j

ul = u 2@u 3. ) Using some elementary algebraic identities, it can be shown that

(13) is equivalent to the Poisson Equations which refer to rigid-body kinematics:

.i w@u i (i=l,2,3).(1_) u = ,

For any vector v = (Vl,V2,V3)*, define the matrix

(16) K(v) =

I 0 -v 3 v2 1

v3 0 -v I

-v2 v I 0

6 - 22



Note that K(v) is skew-symmetric, i.w. K* = -K. Then it is easy to verify the

identities

(17) u®v --K(u)_= -K(v)u, K(v)_: O,

whence (15) is equivalent to

(18) 0 --K(_)u, u(o)--u .
O

The specification that the initial orientation of the body, Uo, and of the

history of its angmlar velocity,{w(t) I 0 _< t < +co_, is completely equivalent to

the specification of the history of the orientation {U(t)I 0 < t < +@#. In fact,

defining A(t) = K(_(t)), the orientation matrix U satisfies the differential

equation

(19) = A(t)U, U(0) = Uo, (A*(t) = -A(t)).

It is easy to see that if U ° is orthogonal, then any solution U(t) of (19) must

be orthogonal.

In fact, (U'U) : IJ*U) + U*U : (AU)*U + U_AU : U*A*U + U*AU = -U*AU + U*AU : 0.

Hence U*(t)U(t) = U*oUo : I3" Furthermore, (19) can have at most one solution,

A _ A

for if U and _ both satisfy (19), then by linearity XfC = U -U satisfies (19),

while (AU)o = O. Thus

t

(20) AU(t) = [ A(T)AU(-r)d'r.
0

Now define for any matrix M its norm pMII as the smallest number such that
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(21) 8_! < #MII Ixll

for every vector x. It can be shown that in general I!._1 <_IIAI/#Bl , etc. Thus,

defining q_ =_Z_U | , we have from (20),

t

(22) 0 _< qD(t) _< • + : (_(T)@(T)dT
O

where CZ(T)(: UA(T)|) is non-negative, and where _ = _ < 0 is any arbitrary znnnber.

(From (2), K = 0, but we leave K general in (22) for other reasons.) A funda-

mental lennna from differential equation theory_ asserts that; as a consequence of (22)

it must be true that

t

(23) 0 < m(t) < _ e_( I _(T)dT), (0 < t < +® ).

O

Since in (20), _ : 0, we have proved that Z_ U(t) : 0, i.e. that U(t) = U(t) for

0 _< t _< +oo. Thus we have proved t_hat (19) has at most one solution, once we have

proved that (22)implies (23). As an illustration of Liapunov's Second Method we

give a direct proof of (23). Define

(24)

Note that

t t

_(t) = (_ + f a(_)_(T)dT) ex_(- : _(_)d_.

0 0

(25)
t t

= -G(t) (e: + j" a(-r)q)(T)dT) - q)(t) exp(- f Q:('r)dT)

o 0

whence by (22), _ < 0. Therefore @(t) _ _(0) = m, which is equivalent to (23).

In conlusion, we shall prove that (19) has at least one solution. In fact, define
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the matrices uJ(t), (j=0,1,2,...) by

(26) uO(t)= Uo' gj+l(t) Uo t= + f A(_)_J(T)d_.
o

Now for any fixed T > 0, there is (by continuity.) a number _ = _(T) such that

I_A(t)| _ _ for 0 __ t __ T. Hence (using _U I - Uo___ _t), it is easy to prove by

induction on j that

(27) lIuJ+l(t)_ uJ(t)H _< (_t)J/j! , (j=O,l, 2,... )

for 0 _< t __ T. Consequently there exists the limit

(28) u(t): :2 uJ(t)
j -*+GO

t.

= + foAUdT, i.e., that(for each fixed t > 0), and it is clear from (26) that U U O

U satisfies (19). In s_y, we have proved that Poisson's Equation (19) possesses

a unique ortho_onal solution U(t) for 0 < t < +oo.

We have gone into detail concerning integration of Poisson's Equation (19). Thls

subject has a direct bearing on the manner in which the orientation of a rigid body

relative to inertial space may be measured; and secondly, it Is necessary to perform

an at least approximate integration of Poisson's Equation on-board, in faster than

real-time, if optimal control is to be achieved without use of a "closed-form" solu-

tion or a "pre-computed stored solution."

In"dead-reckoning" navigation, as practiced with great accuracy, for example,

by Columbus, one computes one's present geographical positinn by means of a precise

knowledge of one's initial position and a continuous record of one's speed and

direction of motion at all subsequent times. In other words, if one's position be
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specified by the radius vector

point particle

x in E3 , then one has for the kinematics of a

(29) _ = v (" = d/dt)

where v is the velocity vector of the particle; hence one's current position is

computable from

(30) x(t) = x° + ft v(x)d_.
O

In dead-reckoning navigation one simply performs an approximate numerical evalua-

tion of the integral in (30).

Now in a space vehicle it is possible to measure the body's angular velocity

vector w(t) directly. In fact, three orthogonal rate gyros fixed along the body's

principle axes will measure, respectively, Wl, w 2 and w 3. Furthermore, at some

initial time the body's orientation U ° may be determined precisely by optical

measurements involving the fixed stars. Consequently, an on-board computer capable

of solving Poisson's Equation (19) in real time, where A(t) = K(w(t)), c_ pro-

vide a continuous estimate of the body:s orientation, based on inertial sensors,

between the times at which a more precise optical determination could be made.

With ground based computers, and arbitrary time available, Poisson's Equation

can be integrated to any required numerical accuracy; in fact, to an accuracy such

that only the erros in measurement of w affect the accuracy of the computed U(t ).

The feasibility of such accuracy in real-time integration of (19), by an on-board

computer, depends both on the merits of the numerical analysis used((26)-(27)-(28),

though valid, is not particularly efficient or rapidly convergent ) and on the

state-of-the-art in computer technology. For many reasons the proposers regard
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the development of such an on-board computer as both desirable and inevitable.

Note that if (9) is inserted in (13), one finds that

(31) _ _

l + e3 sin e2
2 cos eI - e5 cos e2 sin e1

82 sin eI + e3 cos e2 cos eI

Thus,if e2 /_/2, andusing_ = (_l'_2'_3)'

(32) = _(u)w, (e2 / _-/2),

(33)
1, sin eI tan e2, - cos eI tan 8 2 't_

\

)E(u) = 0, cos el, sin e1

O, sin eI cosec e2, cos eI cosec 92

Cle_Xy,re(u)= 13+ O(llull)- Therefore,

(_) = w + 0 (llullllwll).

The question of whether use of Cayley-Klein's U or Euler's u is the best

method for specifying a body's attitude is related to the question of integration

of Poisson's Equation. Suppose that the angular velocity vector w is constant,

i.e., that w = w o. Then U = K(wo)u can be integrated readily; in fact

(35)
K(W ° )t

= K(Wo)U <=> U(t) = e Uo,

where, in general, we define
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At + _ (tJ/j.I)Aj(36) e : In
j=l

(it is easy to see that (36) converges for all t;

0 __t < + oo.)

ul, 2 u3The main drawback to the use of U = ( u , )

by the fact that U*U = I3, i.e., that

in fact lleAtllg_ellAllt,

is its redundancy, caused

uI u2 u3 2(37) 11 II = 11 II : l, u_.u2 = o, : u_ x u .

On the other hand, use of (35) contributes to a method of monitoring reliability,

K(wo(t))
since we can check the accuracy of the computation of e by checking the

validity of (37)- In contrast, the use of the set of Ruler angles u, while non-

redundant, leads to a nonlinear Poisson Equation, even when w Is a constant, namely

(38) _ = _.(U_o,u(o)= %.

It does not appear possible to find directly an explicit closed form solution

u(t) = f(t, Uo) to (38), although we can in theory invert the relationship U = U(u)

of (10) by means of an implicitly defined function u = u(U), and then set

f(t, Uo) u(e K(w°)t= U(Uo) ). However, the actual discrepancy between (35) and (38)

is not as great as might appear, since we can on the other hand find explicitly an

independent set of first integrals of (38). Recall that a scalar function @(u)

is a first integral of (38) if @(u(t)) = _(Uo) for 0 _ t < + co. Similarly, a

vector h(u) is a first integral vector if

(39) h(u(t)) =- h(Uo) , ( 0 -_ t < + oo).
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Now we claim that

l w-u1(u)\I

o

(40) wo.u2(u) -- u*(u_o

w .u3(u)
0

is a first integral vector of (38). In fact,

(41) d(h(u(t)))/dt = 0*w ° = (K(Wo)U)*w ° = U*K(Wo_ ° _= 0.

Although each component of (39) is a first integral, they are not independent; in

fact, obviously, IIh(u)tl = IIU*WolI = IlWol I.

K(w O )t
In this connection, note that U(t) = e _as____ttbe an orthogonal m_trlx by

-K(w ° )t
virtue of the skew-symmetry of K. In fact, clearly, u-l(t) = e since

K(Wo) (t-t) K*(wo)t -K(wo)t

UU "l = e = I3, while U* = e = e = U -1. This fact suggests

the approximate integration of Poisson's Equation (18) by the following plecewise

constant or step-function approximation. For a very small sampling period _, define

(42a) U(t) _--Uj, JT -_ t -_ (j + 1)T,

(42b) uj÷1 = J(w(J_))_uJ, (0 = o,1,2,... ).

Whetheror note w(jT) is measured with perfect accuracy, K is perfectly skew-

symmetric by construction, whence each Uj is automatically orthogonal to the extent

Kv
that e has been computed accurately and to the extent that the accumulation of

round-off errors in passing from Uj to U j+l has not become serious. For very
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small _, the series (36) can be successfully truncated after the first term, which

leads to

(k2c)

In fact, such a

(I 3 + -1 +

uJ+l = [i 3 + vK(w(jT))]uJ + (2), (J = 0,1,2, ...).

Uj+l is approximately orthogonal because (I3 + _K)* = (I3- _K) =

(T2), by virtue of the C. Neuman resolvent series

oo )j(43) (I 3 + vK) -1 = 13 + r (-1 (xK) j
J=l

which converges for all Ivl < i/ll_ I.

The proposers feel that a more careful examination of the propagation of truncati¢

and round-off errors in the numerical scheme (42), in connection with the state of

the instrument art (threshold, drift rates) in w-sensors and certain new com_uter

organization (cf. Aeronca's "parallel systems" or "relaxation" computer) will estab-

lish the feasibility of a new type of on-board computer for real-time integration of

the Poisson Equation.

Turning now to the dynamics of rigid bodies in space, the virtues of the Euler

frame U will be manifest. Let gi denote the total external torque applied to

the body's u i axis (i = 1,2,3), and let g = (gl' g2' g3 )* denote the total

torque vector. (Note: g is expressed now in the U frame; to express g inthe

inertial space E 3, we must use the vector g = U*g = U-Ig. ) Next, let Ji be

the moment of inertia of the body computed about the u i axis, (i = 1,2,3,), and

note that in the U frame the body's inertia tensor can be represented by the matrix

J = diag(Jl' J2' J3 ) = (Jl el'

6 - 31
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N_,if J is constant, the evolution in time of the angular velocity vector w

is governed by Euler's Equation, which together with Poisson's Equation is

(_a) = _(w)u,u(o) = Uo; or a = E(uR, u(o) = uo, u = u(u);

(_b) J* + K(w)Jw--g, w(0)--wo, (3= 0).

If g = g(t) is specified only relative to the inertial space

g = Ug(t), and we must adjoin to (44b) the Poisson Equation.

by g(t), then

However, if g(t )

is defined only relative to the body, then (44) can be integrated independently of

Poisson's Equation.

For example, if g = g(w) has the property that

(49) w-g(w)< o, (w/ o)

then w(t) -_0 as t _+ oo . In fact, using Liapunov's Second Method, let

(46a)

and compute that

= (1/2)w.jw

@6b) ¢= w.J*= -w._(w)aw+w.g< o, (w/ o),

since

w.K(w)Jw= _*(w_.J_= -_(w)_.Jwand _(w)w_ o.

A similar effect can be obtained by altering the geometry of the body's m_ss

distribution, in which case J is not a constant.

In one satellite (TIROS) weights were released, on cords, which moved away

because of centrifugal acceleration. However, as the weights moved away, increasing
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_ ............ - . in theory one could obtainthe body'_ radius, Jo _=_ed, wL_±_ decreased w °

w ° _ 0 by allowing Jo -_ + co. In practice, this was done by releasing the weights

after w ° was reduced to an acceptable level. Another similar scheme serluusly

proposed for attitude control involves extension or retraction of lengthy telescopic

booms made of wide rolls of thin but stiff plastic. Such schemes can, however,

change a vehicle's attitude or angular velocity only if w ° _ O.

For this reason it is often acceptable to regard J as a constant, treating the

effects of J _ 0 by replacing g by g-Jw, i.e., by regarding the term -Jw as

an external disturbing torque whose effects mnst be overcome by proper disposition

of the control torque g. If J is changed deliberately but rather occurs randomly

(e. g., pilots moving about in a manned spacecraft ) then this is doubtless the correct

o

method of treatment of the torque -Jw.

While on the subject of external perturbing torques, it should be noted that

for a high-altitude satellite these torques are quite small. They include

(i) residual atmospheric drag;

(ii) meteoric dust impacts;

(iii) gravitational gradient torques;

(iv) radiation pressure from sun;

(v) magnetic field interactions and induced electric

charges.

In the case of the Transit satellites, permanent bar magnets of exceptionally power-

f_l gaussian strenght have been actually used to damp w to zero precisely as in

(4_) and (46). More generally, the interaction of torques (iii) and (v) have led to

various phenomena observed experimentally in the attitude histories of one Explorer

satellite and in a Tiros satellite. (The satellites possessed magnetic field both

by virtue of residual permanent magnetism and by circulating currents in their

6 - 33



I

I
I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

payloads ). Here we have the phenomenon of an external torque which cannot be specified

except in relation to the surrounding inertial space° Specifically the earth's gravita-

tional and magnetic fields can be regarded as having known histories and futures in E3;

even in a first approximation, regarding the earth as a fixed object in _ and the

satellite in a known almost periodic orbit (including precessional effects due to the

earth's oblateness and consequent non-spherically-symmetric gravitational field acting on

the satellite considered as a point mass); we mnst represent

(47)

where g(t, U)

g as of the form

g = g(t, U)

is almost periodic in t, but where we cannot consider Euler's Equation

separately from Poisson's Equation. The Explorer satellite experienced an almost-periodic

large fluctuation in its angular velocity w which is still regarded as a mystery by the

cognizant NASA physicists. The Tiros exhibited a very large fluctuation both in w and

U (the ranges of eI , e2, e3 exceeding 90° ) with an almost-period of many days; sub-

sequently NASA and RCA scientists performed a numerical integration of (44) with a suitable

term (47) based on torques (iii) and (v) and obtained close agreement with the previously

recorded observations. There is still not available, however, an adequate analytical

theory of this subject, nor a method for treating it other than by numerical integration of

(4_). Nevertheless, it has been seriously proposed that the attitude of a satellite can

be controlled (in particular, by radio-relay from a ground-based control-computer) by

deliberate variation in circulating current loops within the satellite. Hitherto no scienti-

fic approach to the synthesis of such a system has been suggested; however, it will become

apparent that the techniques discussed below by the proposers are sufficiently comprehensive

as to include even such a subtle synthesis problem as this one.

From the point of view of control synthesis, where the actuating torques are to be

independent of the phenomena (i)-(v) above, and independent of J, it seems best to lump

all of the torques into a single torque regarded as an unknown forcing term or "random
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input" d(t). Thus the idealized equations of attitude control are

= K(w)U, U(O) = Uo_ or U = [u), _ = E(u_, u(O) = u °

(_sb) j, + _(_)jw= g + a(t), _(o) = w o
O

We can assume that many properties of d(t ), in particular maxIld(t )If, can be predicted

from statistical studies of the environment; however, d(t) is to be regarded as unknown

otherwise. The idealized attitude control problem can be stated as follows. Given a desired

:,% I_ _ _ .......... ,.. )terminal stat_____e_v , w j, _na a control ±:w g _cn thaL, from the given state kUo)V °

the state (U(t),w(t)) evolves for 0 _ t _ T until

(49) (u(t), w(t)) * (_, wI) as t *T (T __ + oo).

There are many variations on this theme. If T is a fixed a priori we speak of terminal

control. It my be impossible, for small T, unless we pay the cost of a sifficiently

large control torque go In scientific satellites, T need not be small; in fact, it

may be minutes, hours or even days. In future manned spacecraft, especially in military

operations (or in automatic orbiting anti-ICBM satellites) the transition time T can be

critical; hence we expect the importance of time-optimal control to increase. At any rate,

in non-terminal control, the time T is not given in advance but determined implicitly by

(49). If g is continuous and bounded, then necessarily T = + oo. If g is allowed to

be discontinuous (as, e.g., with reaction jets switched on and off) then we can take T

to be finite.

If g = g(t;Wo, Us) then we speak of repj_2rogrammed or open-loop control. If one

measures the state (w, U) continuously and if g = g(w, U} w l, UI) then one speaks of

1
feedback or closed=loop control. The virtue of the latter is that, when 2_ = w-w and
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_ E Av_ ATT _ whence itAU = U-_ are small, most control laws g can _ expressed as g = g_.,_j,

is not necessary to use a different law g for each state (wl, Ul) whose acquisition is

desired. Furthermore, if g(O:O) = 0 but g / 0 for IlZ_wll2 + IIAUII2 / O, then a feedback

control operates until the measured acquisition error is zero, which in view of the imper-

fections in all measurement, computations and mechanizations, is epistemologically preferr-

able, for then the only thing certain is that zero error will be attained at least within

the threshold limits of the sensors used to establish w and Uo However, feedback control,

though more accurate, is also more expensive, more complex and hence less reliable than pre-

programmed control°

We can also consider the efficiency of the control law chosen. Normally, various a

priori constraints on g are available such as

(50) Igil -__'i (_':__-o_ i -- 1,2,3)o

We can define as a performance criterion, or basis of comparison of possible control laws

satisfying the constraints, an integral such as

(51) v = V(Wo, Uo, g)= /T (_(w,U,g)dt
o

Here _ = _(w,U,g) _ 0 is a non-negative smooth function° One can then define an admissable

(g) as optim%l relative to v if it minimizes n in comparison with other admissable

[g} 's .

In Aeronca's Air Force Contract AF 35(616)828_, Monthly Frogress Report No. 6, page 35,

the following result is proved°

THEOREM. For any admissable performance criterion, the. ri_id-bod__s_stem (47) can be optimall_

controlled.
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Now if [g] is admissable and v is well defined for all (Wo, Uo) in some domain,

then we may define x (u*, w*)* u in= = (w), and so define ?F = 7[(Xo; [g)) for all x O

Then we can define a vector

(.52)

for each [g).

p = p(x) = -_(xf

New we can write the attitde control system as

(53) = (j-IE(u_[-K(w)Jw + g(x)]) = F(x,g(x)), x in
o

'The content of the statement (51) is that v = Tr(x) is a Liapunov function for (93)- In

fact, by (91)

(9) d_(x(t))/dt = -G(x) < O.

If a(0) = O, then

some T -_TJS.

Thus we define

T = + OOo If _(x) _ 5 > O, then 7[(x(T)) = O, i.e., x = O, for

(55) H = H(x,p,g)= p.F(x,g) -O_(x_ g)

The equivalent statements (51) and (54) are also now obviously equivalent to the statement

that

(56) H = o.

In other words, a control law g 29ntro19 'the system (_3) and defines a performance index _,

ifand only if the associated Hamiltonlan is zero°

Furthermore, among all admissable control laws [g}, i.e., laws for which H = O, that
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one (or ones ) is optimal which maximizes H relative to the constraints such as (50); in

fact, if the control law g is such that H(x,p,g) _=0, the____ng is also optimal if and

only if the associated Hamiltonian is maximal t ioeo,

(_7) H(x,p,g)= _ = _ H(x,p,g).
Igil_-7i

In practice, (97) determines the optimal g as a function of x and p = -grad(x)_. Let us

call this function g(x; p). Inserting this into the statement H = O, we have a partial

differential equation

(58) H(x,p,E(_,-_d _)) = o,

the Hamiltonian-Jacobi equation which determines _° Explicitly,

(59) e(_,_(x,-_x_lv))o_ v = -_(x,_(x,-_ v)).

Although this equation appears to be formidable, the constraints

that g

in both

in x. )

Igi I -_7i usually require

be piecewise constant, i_eo, that Igil = %i" (However, if (_(x, g) is quadratic

x and g ,ioe, _(x,g) = x-Cx + g-Qg, then in certain regions g will be linear

In this case we can piece toegether Tr(x) from solutions of the equation'

I

I

I

(60) F(_,_)._ _ = -_(x,k)

where k is an arbitrary constant such that I = 7i° The proposers have completely, in

all details, solved the problem (59) for control of linear plants (F = FOx +Flg). For the

case of symmetric satellites J1 = J2 they have solved the preliminary problem (60) and

hope, in due time, to correctly piece together the known functions _(x,k) into the global
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definition of _(x) on _ in which case there will be a_ilable a closed form solution

for the synthesis of optimal satellite attitude control systems.

Another method for computing the optimal g(x) is based on the recent dis°

covery that if one defines a family of control laws g = g(x;_) by

(61) _ = -_ad(g)H(x._(x),g),(0___ < + _)

then

(6a)
dTrd_= - _fTI[grad(g)HI[2dt< O.

Hence as _ -_ + oo, 7r decreases to its minimum and g(x_ _) evolves to the optimal g(x).

This steepest descent computation is suitable for a faster-than-real-time on-board computer

such as Aeronca's Relaxation Computer, which for each measured state x almost instantly

computes the optimal g(x) by integrating (61) with an arbitrary initial control law

g(x_0).

If one wishes to obtain truly high performance, one should take the control law

g = g(u,w_ d) to be a function of the random disturbing input d, which is not known and ex_

ceedingly difficult to measure directly. However, a time-optimal self-adaptive servomotor

giving great gains in performance can be obtained by regarding d (which for our Optlmotor

is the input rat___e,and for the Saturn space vehicle is the crosswind velocity) as piecewise

constant and approximating it by indirect measurements utilizing more readily observed variables

For example, if we regard g and w as observable, and d = d(e) constant for t-_ _-e -_t,

then from (48)
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(63a) d = 1 [J(w(t)-w(t-T)) + I t K(w(e))Jw(e)d8 - I t g(e)de]
T

t-_ t-_

In _rticulsLr, if we use a closed form

h(w(e), g(e))de.

.(63b) g = g(w,u,d)

for optimal control of (48), then the control law

(63c) g = g[w(t), u(t), ft h(w(e), g(e))de]

t-v

will provide an optimal nonlinear feedback law rendered o_timall_ se!f-adaptlve to random

disturbances by means of nonlinear intesral feedback. Notice that for a sufficient large

integer N,

N-1

(64) ft h(e)de = _ T. h(t - ) *O((_/N) 2)
t-_ j=0

which indicates that one can mechanize (6_) quite readily by means of a sampled-data control

computer with a memory capacity for retaining the system state for N sampling periods in

the past.

A detailed example of (63b) and (63c) will be presented below in equations (82)-(84).

Consider now the mechanization of the desired control law g. The torque g is to be

produced by actuators, and thedynamics of the actuators must be considered. Of course, the

simplest method is to use pairs of reaction jets, in which case we may write
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(_) g = 0 s_[o] G = diag(T1,_2' _5)

(where by sgn[c] we mean (sgn[c])_ ei = eioc/leioci_ (i = 1,2,3)). The major consideration

regarding the use of (65) is that the phenomena of time-delay des_l-zone and hysteresis (pre-

sent in any physical relay or switch) lead to a control system in which, after nearly attain-

ing the desired state, the system, s state oscillates or "hunts" around it in a small stable

limlt-cycle. (Even if a dead-zone is employed, the limit.cycle always exists when the dis-

turbing torque d / 0).

Several effective methods for analytical study of the amplitude and frequency of the

limit cycle as a function of the characteristics of the actuators and sensors are given in

Aeronca Technical Reports Noso 60-14 and 60-16.

Consider finally the question of sensing the satellite's state (U, w). Even if we know

precisely the desired control law g = g(u,w), we must mechanize it by using in (48), not

this g but rather

(66) g = g(U., w.)

where (U., w.) constitutes an approximate measurement of the state. In the past it has been

customary to assume that the sensing instruments obey linear laws, e,g., that

(67) _. --K(w.)U.,°**+ m. + _. = Gw

where R and G are diagonal matrixes of positive elements. However, for the acquisition

problem this is not adequate as we have proved quite rigorously.

In measuring a physical macroscopic quantity, something in a way similar to what is

described by the Uncertainty Principle of Microphysics takes place. In fact, when the

quantity being measured is relatively small, the measuring instrument alters that quantity
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(and eventually other dynamical] _._-__!ab!es of the system) to a degree which carmot be reduced

below certain natural practical limits° A detailed examination of the dynamics of satellite-

borne inertial instruments establishes this fact quantitatively (see Aeronca Final Report on

"0ptimal-Nonllnear Systems for the Attitude Control of an Orbiting Vehicle," contract AF

33 (616)8285).

Regarding selection of performance criteria, w,e say that while time-optimallty is basic

to many military missions and should not be neglected, criteria regarding fuel-mass expendi-

ture or energy cost may be paramount in the average acquisition maneuver. However, it makes

no sense to consider either of the latter except as a trade-off a_ainst time, for otherwise

an infinitely slew maneuver uses the least fuel or energy.

In the use of jet reaction control

(68)

we shall employ either

fl = E(u_, J# = -K(w)Jw + Gc + d

(69) Tl --I_ (i+ _Icl)at, _ > O,
O

where Icl = c°s_[c]: ICli + i_21

c = -sgn[p] which minimizes TF1 =

+ in31, in which case we obtain a discontinuous control

(transition time) + _(fuel-mass)_

(0) 7F2 = /°°[k(w-Jw) + _(coGc)]dt, k > O, _ > O,
O

in which case we find a continuous control law,

minimization of (3)°

necessitating throttling of the Jets for

An important result in this connection is the super_gsition Principle for Euler's angles.

2,1 u3,1 2 e3
In fact, if in the preceding we choose (ul'l, u , ) = (eI , e, ) = I3, then we

obtain a standard control law.

6 - 42



I

I
I

I
I

I
I

I

I
I

I
l
I

I

I
I

I
I

I

(71) c : _sgn[g], g : g(el, e2, e3, Wl, w2, w3) .

The control law (71)drives the rigid_body from any initial state to rest in the standard

orientation u(T) = w(T) = O, i.e.,

(72) el(T) = e2(T) = e3(T) = Wl(T) = w2(T ) = w3(T ) = O.

It is of considerable importance that the control law

(73) g = g(Ol-Ol I, 02-021 ° 03-03 I, w I, w 2, w3)

drives the body optimally to rest in the orientation

(74) el(T) = ell, e2(T) = e22, O3(T) = 033, w(T) = 0°

The availability of the superposftion principle (73)-(74) is quite convenient_ how-every

there is no such principle available if we abandon the condition that w(T) = O. Thus,

optimal control to a slewing state w(T) = wl, cannot be obtained merely by using

g = g(U-_, w-wz)_ rather the control la_ hasthe form g(U-_, w,w1).

The second possible computrol system relies on solving the t-go-point boun_ value

problem with an on-board high-speed computer° Studies indicate that of the numerous schemes

proposed for this the most efficient is the Relaxation Method described below in Section

The third method is the closed form solution technique for optimal control system

synthesis. In the sequel, we shall derive the linear and quadratic terms in the power

series expansion of the optimal control law and prove that this Approximate Closed Form

yields a stable control system which is quasi-optimal. A preliminary design of Aeronca's

Closed Form Com_uter will also be presented°

For time-optimal control each jet-actuated control torque should either be given by

the signum of + 1 or _l. Such a control is called BANG-BANG control.
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In 2. _ 2 a discussion of BANG-COAST-BANG control fuel-mass-minimal-control with a con-

crete example from attitude control is given. From this discussion a control law stable as

a simultaneous 3-axis quasi-optimal control law in some neighborhood of the origin is

developed. In practice we may, for example, attain this neighborhood by using the Stored

Function Computer, then switch to the Relaxation Computer or the Closed Form Comguter, for

bringing the body to the state wherein the linear vernier control is to apply.
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7.0 Conclusions and Recommendations.

It is now clear that the theory of optimal control is able to yield closed form

expressions for the switching surfaces. That is, the theory has given us the condition

of the driving of the actuators and from this condition it is possible to state the

switching surfaces for an admittedly small class of plants. Further while this class

of plants is small, it is general in the sense that the phase space can be of arbitrarily

high dimension.

Now examine what is meant by Optimal Control. By this is meant a control that will

give the best performance with respect to some constraint. That expressions for the

switching surfaces are available means that it is possible to know the procedure that

must be followed to obtain the ultimate performance, but more so it is possible to

have insight as to how to best approach this performance in view of more general con-

straints that arise with a real plant which are not so easily stated in anlitic terms.

Further it is possible to have some criteria of performance in the selection of a

feasible control system, where it is not possible to make the feasible control optimal.

In essence it is now possible to begin the development of a "rational" synthesis

procedure.

Above in Chapter 3, areas of attack have been suggested. These procedures were

suggested from the standpoint of simply pushing the problem of constructing the

control surfaces. Here the more general question of developing a "rational" synthesis

procedure will be examined.

First there is of course the problem of pushing the theory toward developing Control

surfaces for more general plants. But there is another direction in which the theory

can be enlarged. Now that expressions for the surface are available, it is desirable to

know what can be done with them. In particular, it might arise that in the control of

a nonlinear plant that one would want to use,the surface that would arise from locally

linearizing the abstract plant for every point in phase space. Would this give a control

-* 1
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law and if so under what conditions for the p_t. Further if such a procedure

did make the plant controllable, by what performance criteria could it be determined

how good the control is.

Another of the observations that is to be made about the results now in hand is

how unwieldly they become for even the cases of small order. On the other hand, it seems

that there will be methodical procedures for generating the surfaces. It seems that a

situation is arising that is not amenable to ordinary analytical techniques. A step

toward more abstract methods must of necessity be made if the information required is

to be elicited. The designer is not going to have statements at. hand in a form simple

enough so that he will be able to immediately go to a computer and generate the data

with which to make his decision. Rather it looks like he is going to have to go to the

computer to even generate the statements that he wishes to examine, and subsequently

have to use the computer to scan the statements to deliver the criteria he seeks.

Prior to the possibility of this, much more about the abstract qualities of the expressions

for the switching surfaces must be known.

The recommendations are then just an expression of the above comments.

I. That work be continued toward the development of expressions for switching

surfaces for more general plants.

II. That techniques for generating and analyzing these expression by the use of

computers be developed as an adjunct to recommentation I. and for the purpose of de-

veloping a "rational"synthesis procedure.

III. That the design of a specific plant or plants be carried out as a focus

for learning how to integrate the theory and techniques now known.
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APPENDIX I

The polynomial

(i)
r r-i

x +SlX + "'" + a_ = 0

has the companion matrix

(2)

Each eigenvalue k

for the eigenvector z.

-sI 1

-s2 0

ooo

MS eeo

r

eeo

1

=S
i

0

of the matrix satisfies the relation

SZ=kZ

I

I
I

Specifically, for the eigenvector having first term = 13

(3)
zi+1 - si

X = for all i
Zo

1

ni = zi_1 - si.

We let the consequence (3) become our condition and define for arbitrary

i necessarily an eigenvector the set of k:s,

zi+1 _ si ni

i Make the numbers

Define

no n_

I ./
Xi-k j _.

i zj

I--1

Z not
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i uij

= n z - njzi(6) ulJ i J

It is to be noted that an if and only if relationship exists between (5) and (6) for non

zero zi's. More pertinent is that the condition of z being an eigenvector makes all

equal to zero. By the same token the f_nction

i (7) _=_ u..j_.o.iJ iJ IJ '

l will also be zero under this condition. As a sum of moduli it is obvious that _ can omly

l take values -_ than zero at points other than eigenvectors.
The one remaining possibility that _ could be zero is for

Z=O

l whlch is eliminated by constraining zI to be equal to I. Finding the points at which

_ = 0 then finds the eigenvectors of the matrix S.
The procedure that is used is that of steepest descents. An arbitrary value of Z

l ls chosen. The gradient of _ for the arbitrary Z computed and then the best distance

along the gradient is determined. This pair,the gradient and the best distance, give a

i correctlon to Z and the process is then repeated until a final converged value of Z

is obtained.

The algebra of this procedure follows. First the gradient

i

i
(9) v,

1

I,-2



Variation of the _ and gathering the coefficients of the varied components of

gives these coefficients.

| (1o) 5_ : RR(Z (Szin j + 5njzi-Szjni-Gniz j_iJ ) : 9_R(_)
ij

I (n)

!

!

n
(12)

m

|

!
(13),

|

= z._.g.-Szn _ g.
2T _j(Szinj_in j + 5nj i i 3 j i i 3

M _ M m

- 5nizjzin j - 5zinjzjn i - 5n.z.z.n.jIj i

+ 8zjnizjn i + 5nizJzjn i)

k = S Iz tl 2
i

, = Z ''lnft 2
i

A = Z ni_,
i i

m m

r = ki_.niSni + &S_.Sz° - ffniSz i - _iziSnii 1 1

! + _{. _ Xz__l)Szi2 8i_ = R(kni=l -Az_i i

V@ = kn + Lz - An - Az-

Improving Z by the vector RfV in the direction V = _, gives the polynomial

(16)
uij = _zi + r'vi)(n j.+ r'vj+!) - (zj + r'vj)(nj + r'vi+l)
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(17)

where

and for

(_8)

where

,2

uij = _ij r +_ijr' + rij

_ij = (vivj+l - vjvi+ l)

Bij = (zivj+ 1 - zjvi+ 1 + njv i - niv j)

Irij = (zin j - zjn i)

_(&ij_ - _ _= i_j(%r'2+ _ijr '+ _ , + #ijr,+ _ij)

Ir'l 4 z _.._. = 1_,14(o_1BI2):: aoJr,14
ij 1j ij

Ir'l 2 '_' - = Ir'12r'(c(c + P.)-BD-Nm) _zJr J2r,r ijGij_ij . = ,

Ir'l e_' _,..+a_j_a = %:_,I_.,I2

Ir'l_ij _ij_ij = Ir'12Cc(a + b) + _ + _c - AB-_ _iol2_ IF12)= a21r,12

r'_ _..+_ = r'2Cc_-D+') - _'_3ij 1a ij

_ij_ij = _f2a 3_' rij
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and

t g

iJ ij ij

_'_iJ_ij_'ij= _'a_

: _ii_il2

, = _In±l2
l

_--_i _

A = Z ni_ i
i

B = _ vivi+ 1

C = Z viz ii

D=_
i Vi+lZi

E=Z
i vi+lni

F = _ vin i

It is to be noted that the equation is a polynomial in both r' and _'.

an analytic function of r' a straightforward solution is not available.

solution the equation is first simplified to the form

I-5

As r' is not

In pursuing a
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(20)

where

(21)

(22)

(23)

Ir'l _

+ alr'l 2(r'_ + _'_) + _'_ _._'_o + Ir'l 2o + r'd + r'd + e = 0

r-- r T +a

Ir'l 2 (ir12 - -= - ra - ra + II,a,2_
2

r' = r - a, _' = _ - E

r' 2 2 2 _, 2 -2 E2= r - 2at + a , = r - 2a-Y+ )

ir_4 + 21r12r_ + 2_r#2- 4r_ = I_1 -21rl2(_ + _) + 21r121al2
2-2

+ r-2a2 + 21r121al 2 + r a -21al 2(7a + r_) +lal 4 + 2_(rlrl 2 _ Irl 2
2.. 2 2

r a + r lal a #r I + Fa 2 + r la_ 2 2 2 ..2 2-- - - a I_1 ) + 2_(Tlrl - r a - It! a

+ 71_2 _ _frl2 + Tlal2 + .2 _ Wlal2)

(24) ir14

r2(£_ a2) (___r2)

T2(b_ a2) (_-_)

Irl 2(_ 41al 2 + c) (-" __lrl 2)

r (_¢lal 2 - 2ab + _c + _ (_-fr)

T (4a lal 2 _ 2_b + a_ + d) (_ fr)

e -- _.

Finding the solution in this form is not pursue&, rather a transformation to the

variables (d,_), is made.

z-6



and

d = Irl

= arc tan r imaginary
r real

r = d(cos _ + i sin _)

B = I_I '

A = arc tan _ imaginary
resd

F--Ill

C = arc tan f,imaginar_
f real

(_)

and since

= d4 + d_(e2i_e -IA + e-2i_e iA) + d2_ + dF(ei_e -iC+ e-i_e IC) + e

cos @ : _e + e-i_ )

(e6) * = dj¢ + d2(2.B cos(2_-A) + _) + 2d.F cos(_-C) + e.

Setting

z"

(27)

#' =_-2 A

1
_= :A-:

= d_ + d2(2Bco_2_' + _) + 2_ oos@' +¢D) +e =0.

We look for points where

mlnlmawe seek.

variation.

(28)

(29)

By varying

is stable with respect to both d and _, for such are the

with respect to both variables, we find points of Zero

o = _3 + _(2B cos 2#' + _) + 2Fco_(#, +_))

o = __2_ sin 2#' + 2_ sin(#' + _)

o= o = 2d3 + d(2B cos 2,_' + _) + _ co_(_' + _)

_: 0 = 2dB sin 2_' + F sin(_' + _o)

1-.7



where these two curves intersect are the solutions to the system. We choose the extremum

yielding the lowest value of _ and with it correct Z. Thus we arrive at a new point,

for which _ is less than any previous value. The procedure should converge rapidly.

Solving _ and _3 then, is the primary complication. The graph of the function

in the significant range n(_) g-_m_ __ (n + 2_

\

with solution points indicated. By initially setting B large with respect to

f and _ _ and by moving _ to a canonical position, we obtain a graph whose

solutions may be estimated closely by inspection.
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Then# by changing B and _ by small increments, we can step back to their original values

Breal and _real and follow the loci of all the solution points. Thus can all seven

(possible) roots be found, and the best chosen.

Two things could go wrong. Firsts near the intersection of two loci3 one locus might

change course and start to follow the other. To handle this situation, we save past values

of 8(d, _) and compute sin A_ were A is the angle between the last and the present

gradient at the point of solution. Should sin A increase sharply for two consecutive

steps, the course is assumed changed and the tracing is restarted,this time with B and

increments half as large.

A locus might also leave the real plane. Since the two points of intersection of

two curves disappear together 3 these two loci are traced simultaneously, and should they

approach each other so closely that their coincidence is imminent, they are discarded

together. The algorithm uses Newton's generalized method to converge on solution points

along the loci.

!-9
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The equations

(Xl, x2, ' = 0f ..._ XnJ

g(_, x2, ...,_)= 0
oae

h(xI, x2, ..o, xn) =0

whose simultaneous solutions include (Xls , X2s , .. o, Xns ) can be expanded about any

point 0 f(Xls' X2s3 ) "_ f(xl' x2_ _ Xn) + _l _2= ...... (_-xls)+ (x2-X2s)+ ...

o = g(Ss' x2s' "')_ g(5' x2' "'" ) + o_(xi-_is ) +

Under the circumstances that a set of simultaneous equations is to be solved and

a good approxlmation to a solution is already known, the method of Newton, in a generalized

form, can be used to improve the solution. The technique is to expand each of the

functions about the approximate solution in a Taylor's expansion and thenjdlsearding all

but the linear terms of the expansions_proceed to solve the set of simultaneous equations

that arise. Say, that it is desired to solve

(2s) = 2_3 + d(_ cos 2_' + _ ) + F _os(_' + _) = 0

(28a) = 2d.B sin 2_' + F sin(_' + _) = 0

I-lO
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we obtain

(29) d-d sol. =

= Jacobian

'-_' so1. =

lab _,_ _(d, _-)

where

Jacobian

(31) a_ 6a2
= + m cos2@'+

= -adB sin 2_ _ - F sin (_ + m)

_ = 2_B sin 2_'

_, = _ sin2_'+F oos(_'+_)
"Y"

Iteration of this procedure will quickly converge to an _rbitrarily close approxima-

tion to the solution if the starting approximation was adequately accurate.

A similar procedure can be used to keep close to the locus of the solution of a set

of equatlons,as the coefficients of the equations are changed. Actually the procedure

1-11



I

I
I
I

I

I
I

I
I
I

I

I
I

I
I

I

that follows can be applied to t_ fnlio_!ng of any _nn+n_ of the solution space and is

particularlized in this case to "be _he following of the locus of the solution.

For the finite difference stepping procedare_

(32) _ = _ +

efficients of the variations

we get by finding the co-

(33)

Now setting

(34)

gives

J

_'_+ _+_--o

_.-__+_o

_._,_+_o.

8cz 8o_

1-12



8G

2zo /J

AB+ 2zo /J

8_
where B_ = 2d cos 2_

8_
= -F sin(_ + _)

_B = 2d sin 2_

8B
- F cos( +

and AB = (Binit - Breal )/N

= ((ocanon - _0real)/N

where N steps are taken to find the solution for the exact equation.

These stepping equations can then be _sed to find an approximation of the solution

for the equations with modified coefficients. From the approximation it is then

possible to find a solution to the desired accuracy by applying Newton's method. The

1-13
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equations can then be further modified and the process continued iteratively until the

solutions for the exact equations are found.

1-14



I

I
I

APPKND!X II

The program operates as follows, then•

i) Initialize_ read in values for S.

2) Compute N = Z + - S

The Z's are set initially to i.

I

I

I
3) Compute

k = Zz._.
1 1

i

A = Zz._.
• 1 1

1

L = 2re.E•
• 1 1
1

grad _ = k_ + _Z - AN - _ =V

Compute C = Z v._.
iI

i

4) Compute

_) Compute

D = Z v.z.__±± J_
i

F = Z v.n.
1 1

i

m

E = Z vini-_.L
i

m

m =_v.v.
1 1

i

B = E v_v_÷__ _
i

a° : m - IBI2

E : (m(C+ E) -BD -9F)/%

= (CE - DF)/a °

c : (m(_ + _)*E[+_C -AB -_- IDI2 - IFl2)/ao

i _ = (_ - D_)/a°

e = (k, -IAi2)/ao

I
6) Compute b - a =

i c - '-t.lal 2 =

a_ - 2ab + d = f

i These last 3_ plus e_ are the coefficients of 40
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7) Compute B = ITiJ , F = _fl

Compute A = tan -I R_

Compute _ = tan -I __ 1/2 A

8) Choose quadrants in which solutions will lie. There are two possible cases,

depending on the amplitude of co.

Do steps 9 - 18 for each of _ pairs of locl.

9) Set initial values to B _.Li <'3.

Set initial approximation to (d,_) for each locus of pair°

i0) Set MPH = number of iterations.

Binitial - Breal
Set ZkB =

MPH

,_canon. - "_real
Set Zkn =

MPH

ii) Converge on solution for initial B,co.

Do steps 12 - 16 MPH times

Do steps 12 - 15 for each locus of pair.

12) Change B by ZSB, _ by Zko.

Step off (2_d, ZS_) for change in B,co.

13) Compare (_d, ZS_) to 13previous values. If the sine of the angle of their

change is large, go to step 14. Otherwise, to step 15.

14) If last value of sine was also too large, set MPH to 2 MPH+ l, and go back

to step 10. Otherwise, set (ZSd, A_) to last value of (2_d, 2_), substitute un-

converged value of present point for converged value, and proceed.

15) Converge on new point (d, _) by Newton's Method.

16) Test to determine if pair of solutions will disappear; if so, go back to

step 9, for next pair of solutions.

17) Compute _/ for new solution. Determine if solutions found improve value

of 4. If so, solve new solutions and replace value of @ with improved value.

II - 2
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18) Test if all pairs of solutions _mve been found, if not, change initial

condition_and return to step 9.

19) Correct the root last recorded in step 18 to higher accuracy by Newton's

Method•

20) Find real and imaginary parts of R' from solution of step 19.

21) Correct R' by translator a: R = R' + _

22) Correct Z . Z = Z + RV.

23) Test @. If @ > e, go back to step i.

24) @ <_ e_ set k = z2 - sI

25) Reduce S by synthetic division

• = s. + _s. (so )Sl 1 i-i _ = 1

26) Test order of S to see if all eigenvalues have been found. If not, go

to step i.

II - 3
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C

t

]

I.

.-.-,

i

:=
I

[,.

C

C

AF_,31D&rx It "T,

DIMB_: ....vC_.o,2L}{CaeL_,C8,2),oC2,2,_),I_,C:e)

S'D31x'_I'2I]N__;KMUL.T

NONLDCAL V,I_.',LI, L_,._.JSjT

V¢) I !C=I,2
IS= 5-]c

V{_ 'VCLI, IS))

E&'D

N-_4'_.:.__D _,tr_-._..... F[ ACI_

NO'R_CAL H_D,M__, _ i

.... _'v....._._ ,__:_,,22))

H,".,.0;"',,,,SZ_ .':((22)"-t{C6:. . )
HC22 ) =COSF (H : 2.2),-H :"6 ) )
Hi l) ='6' D( P-,N) ' D(2.,N. ,---"""::' "'.-.5) ' _If :.-_) +'.."-,}
H(2):-_'D(2,N)'H::5)'iI_.)-_(14)'H{ !O:

H(7)=H(1) '"tb_..,,--,_,""°_ ..-,j)..
]_JL'I_JI-:N

SU_OLF2ZNE *L'OCOB%F,.:_P.Q_ON [, SC,:mT, '. ":','_-Nc; _" _='_.,_.,;i"3 ,,,r'_,_:,_'-,
S._P.CUT _rZ IV_..,,'I<'-N_Ti)
I_%)NLC:]AL )5Sl,"_,D,iPSI,.C/_S.T

"_i{(.,)"..-{,9 ) +xs z)-,-'..i'".u), m: "''' ,_.,-
I[_]J)d;'D(2, t_)'H(5)'_/8_-'._i_q_'_f'ic:).,.' ,. , .

IO _ !,-1,2

:{(i+').••'-,',._- ,,.,-..._,-',(_(t_.)_.;. ' _Cz)-:_:." _) ,_-_(_- l/la: ?)
D(i,_)--_..'Z,_)-_(r+lO)
:m,._,_2)/_C_,_)-_.__ _.,,2,2,z

r v

_,_' J, (VCI,I).av(I,;_),I,-!., J),Ki SI,LLST, U!_," {,.iP:

E <20)-:1.:K}CX_rw_o,>_o.

V (I", :0, 1)=i

v(:.Lo, 2_:.c.
DO 4 I_21,49

£0 !_ ]'C=-1,2

C(': :i-'U['.;; N ''-.
:.06 I=i,J

5 IC,:I,2
, , , _.¢ '!V(!+20_ IC ;:-_(]..:0., ,C,- . , ,, ....

C'" _f,:1.'!_, k.,A,1
T=I

I £_.[ -k-



6

C

5
C

C

C

17

C

18
C

C

19

C

C

1

2

1

1

1

DO 6 K=O, 2

L2-K'(K-I)'_._O*I

CALL IO4LrLT
DO 9 I-2, J
COMFVrE GRADIENT Y

MU=I+50
DO 8 K-l,2
DO 8 MPH_O,I

LI=I+K' IO-MFH

L2: _-K-MPH

MJS--_

_r-(0,n_a+K-X)'(_'n_K- _+)-X)/V(43, ".)

CALL D$.".T

COMPUTE B,C_D_E_F,m
T-I

LI= I+30

DO 9 K=_O, _),i0
DO 9 MPH_,I

MU--MU_1

i2=T+K-._t_H

CALL k'MULT

CO_!_'rE aOt c,e . .
V(_, I)_V (_, i)'V(_, i)-V(49, i) °V(_9,1)-V _9, 2) W(_9, 2)

v(26,x)-v(_,l!,(v0a,1)+v0+.'.,x))+2:(v,,_m,x),v,_,x):v(_7,2)
,v(i+i+,2) )-2' 'v ',2,'t ) ,v(49,X)-VC_a,:_) ,v(_9, a))-v(_5,1) 'v(z*5, x)
.v(Z+5,2),v(_5,2)-v(_6,x),v(_6,x)-v(_6,_)'vC_6,:')
v(z_,_)_v(_x,x),v(_,x)-v(_,x)'v(_,x)-v(_,_)'v(_,_)
COMPUTE COMPLEX COEFFICIENTS a,b,d

DO 17 IC-I,2
IS=_-IC
K= IS- IC

V (27,IC )=V _, I)' (¥(_, IC)+V(gg, IC) )-V (_9,IC )'(V(_, IC )-

K,V(_, _')+v(_,z) 'K+V(_,_'))
V( _, IC )=V (_+, l)'V(&7, IC )-V (_5, IC )'V (_6, IC )-K' (V(M+, 2) 'V(_7, m)

.v(Z+%a),v(_6, m) ) , ,
V(aSaIC)-V(_X,X)'V(_T, IC)+V(_},I) V(_,IC)-V(_a, IC) (V(_,2)

+v(_,x))+(v__, a)+v(_5,X]'K)
DIVIDE ALL (X)EFFICIERTS BY aO

DO 18 I=21,_6

DO 18 IC-l,_

V(I, IC )*V{I,1O)/V (29.,I)

0(_ XSI
XSI-V(_, 1)-W' (V(27, _ )'V(27, ] )+V(27, 2) 'V(27, :m))

COMPL'TE ErA A_ f

DO 19 TC=l,2

IB=_- IC

K=IS-IC

V(23, IC),,K'(V(_.0@,IC)+V(27,_),V(27,IS))-V(27,1)'V(27,IC)
vfP__,TC)-_:'(VC_'_,_)-V(_7,_)' (_Sz+a,_v(_,x),_+v(_B,a))))
Ot_ (V(I, I),V(I, a), I-m,_9)

INITIALIZE

MUS=-I

:_Cu)=x

Ill -2-
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!
!

C

!

C
32

C
C

53
55

C
_6

C

C

C

C

57
C

55

C

C

C

C

C

56

C

C

1

C

COMPUTE A,B, OMI_AIAND F
DO 30 I=22,23

H(I-7)=. 5' (_'V ,'I,_)/V(I, l))+sm_(H(n ),v(I,I) )-I),
s_F (H'ZZ),V(I,2)))'Z.570796_
_(I-9)_ _(v(I,z),v(I,1)+v(I,2),v(I,2))

H(17).-6.38518528
FINDTH_ QUAD_A"rU_ WHICH(-O_A) LIES
H(17)-H(Z7)+I.570"__32
MUS=-MUS

IF(H(al)+H(175) 52,_,, 55

IF OMEG_ IS A MULTIPLE OF PI/e, IT WAS CKA_)ED SLIGRTLY
TO SIMPLIFY _ATION

H(21)_.H(21 )+.157079632

IF (sus)_6,55, 55
]a3S=-l_5
H(17)=H(17)-Z. 57079652

COMPUTEAPPROXn_ATm_SoF SOLUTIO_ FOR FroST _'Am
D (5,I )_O.157079652

D( 5,2) -i.41371669

D(6,1)..H(14)

o(6,2):-.(1_)/H(16)
M.%DI L_P:ONE PASS FOB EACH PAIR OF SO'LUTIO_S
DO 37 IS-l,4
AT THE BEOINNI_ OF EACH PASS,MPH IS SET _UAL TO M._.
IF IT BECOMES NECESSARY DURING A PASS, THE VALUE WII_ BE INC_]_O
MPH_4ANY

MU=-I
SET B TO ITS INITIAL VALUE

AFTER THE SECON-D PASS, THE INITIAL VALUES ARE SLrG_I"L¥ CKA_)ED

IF (IS-5)9, 55, 9

D(6, I)-A_SF(XS I-H(LI) )

D( 5,25-0.785_9806
CC@_M_TE DELTA OMEGA AND DELTA B

H(65--I._1571669
SET dAND PHI TO THE]3 INITIAL APPRGXIMETIO_S AND

CONVERGE ON SOLUTIONS, _8II_ NEW'K_'S _T;K)D

DO 38 IC=1,2

DO 56 I=i,2

D( I, IC)=_'D( I+_, IC)
FOR EACH PASS, THE INITIAL A_XIMATIOIIB ARE THE N_A_I_
OF _E OF TIlE LAST PASS

D( I+_, IC )=D( I, IC )
CALL_Wm. (IC)
LOOP TO STEP TO DESIRED SOLUTION FOR EAC_ POINT

DO 40 LI-1,MPH

DO _1 It=l, 2

CALL DIFFER (IC)
DELTA d AND DELTA PHI

DO 58 I=1,2

0( I, IC,I)=( 5-e' I)' (2'D(2, IC)' (H(9) 'I_(I÷Z).w(8) .w(I) )'11(18)

-H(21)' (H(_2)',(I)-H(10) 'a(I+2) )'N(19))/H(75
THE _ZSO. _ S_S m LOC_ OUT OF THE rZ_ST) PASSmS
IF(LI-_) 65,62,62

III-3-



!
COMPb'I'ETHE S3E OF TEE AISLE OP CEAI_E 1fOR TEE

I C Ta_E IELTAS
62 .(_)=_SF(a(l, IC,&)'O(I, _, 2)-0(Z, re, _).o(I, _,1))

1/'SQ_"F ( (O(I, IC,1)'O(I, I_,l_(I, l_,_)'O(I, IC, _))'

m 2 (o(Z,lC,2),o(X,lC,2),o(z,_,k),o(z,_,k)))C SINE TEST- IS TBE ImCtm oRnm_ mlo_f

m c63
C

m C65

IF (ABSF(K(.11)/D(Z+6,:_)).._) 6_,6_,61
IF SO, SET LO TO 1
LO( IC )-i
REPLACE T_E OLD C(RREED S_IE BY TAE _EW ORE

D(I+6, IC)-H(11)

I C

58
! c

C

! o
C

! c61
6A

I
C

! c92

D( I, IC ),.D( I, IC )_( I, IC,1)
D(I÷2, IC)-D(I, IC)
MOVE THE PAST IELTAS BACK ONE TD4E UNIT
Do 58 X-l,_

I2-5-K

a( I, IC,I2)-G( I, IC, I2-1)
CORVERGE _0 I_IRT (_

CALL REWT_I (IC)
ON THE FIRST PABS_THERE IB ONLY £_E 80LUTIDN BEIRO IrO_

IF (IS-l) _1,90,_I

TEST FOR SIRE FAILED._'f -TRIP FOB BEXT PASS, SZT RR_ERT _ELT_ TO LAST
DELTA, ARD I__ THE _00_W_D _ TIK_._THE (X@R_9
VAr/_ OF THE FRESEWf POINT.

IF(LO(IC)) 92, 6_, 6_

G( I, IC,1),,G( I,IC,2)
D( I,IC)-D( I+2,IC)

LO(IC)--I

o_o 6_
IF TEE SINE WAS TOO LArgE FOR TWO StECE_P4E STEPS,WE
SET MPH TO A MUCH _ YALtIE _ START _AIN

l_J-i

i _TO_7_I COnTinUE

C TEST IF THE TWO POINTS ARE TOO CIX)SE,A_D M_T BE DISCA_
DO _ IC-I,2

I DO _8 1"1,2
IF(A_F( (D(I,I)-D(I,2))/O(I, IC, I))-)) 90,90,_8

_8 COmTnmm

I 00 TO _7

Ii_mm_vl' B AIID ONB_As(_).w(W-,,(_s.)
w(6).-(6)--(_9) __

I C TWO 80ILT_O_B IIAVE _ IKXIBD.COMI_TE RSI
91 DO 37 IT_,I,2

CALL DIFF_(IC)
W(8)-D(2, IC) 'D(2, IC) '(D(2, IC)'D(2, IC )+H(16) '

I _ _(9)+mz)+w(_)'w(m)+v(_,2)
C m T_E _ mI BEIT_ T_A_ T_E OLDf

IF(_(_o)-_(8))_?,_?,_

D(1, IC)-D(I, IC _,H(I_ ) . ..
v(2_,z)-D(2,IC),ccm,CD(_,,c))II

•I v(23,2).I)(2,IC),smm,(D(z,xc))
,,(2o),,_(8)
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I
I
I

i
I

I
I

I
I

I
I

I
I

C

37
_5
20

C

C

15

C

16

IF PSI IS SMALL _K_I3HI_I4P O_T OF I_tT_01V

IF (H(20)-EPSI) _5,55,37
CORTINUE

DO 20 IC-I,2

V(_, IC )..V (23, IC )+¥( 27,1E )
DO 13 IC=I,2
IS-3- IC
DO I_ I=l,J
CHAIqSE Z BY Z=q.,+R'V
V( I+I0, IC )-V(22, i) 'V(I÷_OaIC )+(IS- IC )'V(22, 2 )'¥( I÷_O, IS )

IF(K(20)E_SI) I_,14,3
V(22, I),V(22, 2),H(20)

EI_,v_ .As s_ _.mwucs s sr _I_ Drv_sIO,
v(1,1}-I

/,_IS=...I
DO 15 MU-2,J
LlmI-I

CAll KMLNUT

J=J-I

v(1,1)-o
HAVE ALL EIDF/qVALUES BE_q FOt_P? IF WOT,O0 BACK TO BEGINNI_C
IF(J) i_16, I
STOP

END

_D
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